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One common application of curve-fitting occurs in the analysis of ultra-
centrifuge data. Suppose we load the centrifuge cell (a wedge-like container
with circular-profile surfaces at each end) of an ultracentrifuge with a so-
lution of a particular substance or substances, and then spin the cell until
the molecules in solution distribute themselves in the cell according to the
forces that act upon them. This equilibrium arrangement will have the com-
plex solute distributed in the cell in an exponential fashion with relatively
more of the complex solute at the bottom (which is the outer end) of the
cell. Therefore the concentration of the complex solute varies at different
positions along the cell (i.e., at different radial positions or distances from
the center of the ultracentrifuge.)

Let us denote a given radial position by r, measured in centimeters from
the center of rotation, where the cell ranges from the top position at rm to the
bottom position at the outer end of the cell at rb. Then the concentration
of a single-substance solute, c, measured in grams per liter, at the radial
position r is a function of r given as:

c(r) = che
AN(r2−r2

h
),

where

ch is the concentration in grams per liter of the solute at a given reference
radial position, rh. The value ch can be computed from N and c0, the
total amount of solute in the cell measured in grams per liter, however,
in practice, ch can be determined by curve-fitting.

rh is the given radial reference position (it is not necessary that rh be rb or
rm, indeed rb is generally a poor choice).

N is the apparent molecular weight of the solute.
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A is a certain constant, defined as: (1− v̄ρ)w2/(2RT ), where v̄ is the partial
specific volume of the solute (1/v̄ is the density of the anhydrous solute,
so v̄ is measured in cm3/gram), ρ is the solution density in grams/cm3,
w is the angular velocity of the rotor in radians per second, R is the
gas constant (≈ 8.314× 107 ergs/degree/mole), and T is the absolute
temperature.

Due to the non-ideal diffusion behavior of most materials, the observable
or apparent molecular weight N , at a given radial position r, is approx-
imately the following non-linear function of the actual molecular weight,
M : N ≈ M/(1 + BMc(r)), where the parameter B is the so-called virial
coefficient, with B ≥ 0.

Thus N is a function of r, and we have:

c(r) = ch exp(AM(r2
− r2

h)/(1 +BMc(r))), or

c(r) = root(x, 0, cmax, (ch exp(AM(r2
− r2

h)/(1 +MBx))− x).

The notation root(x, a, b, f(x)) denotes a value, x0, in the interval [a, b] which
is a root of the expression f(x), i.e., x0 is a value such that f(x0) = 0. MLAB
provides the root operator as a built-in function ROOT. The value cmax is any
value greater than c(rb), which is an upper bound for c(r).

If we have several solutes with unknown molecular weights, then the
equation for the combined concentration distribution is merely the sum of
the separate concentration distributions.

In general, we have: c(r) = c1(r) + c2(r) + . . . + cn(r), where the gram
per liter concentration of the ith solute is ci(r) = chi exp(ANi(r

2 − r2
h)), Ni

is the apparent molecular weight of the ith solute, and chi is the grams per
liter concentration of the ith solute at the reference position rh, and Ai is
the usual constant (1− v̄ρ)w2/(2RT ) described above, particularized for the
ith solute.

As before, Ni is a function of r and the true molecular weight, Mi,
namely: Ni ≈ Mi/(1 + BiMic(r)). In fact this is an approximation to the
relationship:

Ni = Mi/(1 +
n∑

k=1

∞∑
j=1

Bikj(Mick(r))
j)

Usually assuming each value Bik1 is the same, namely Bi/n, for 1 ≤ k ≤
n and Bikj = 0 for 1 < j is adequate, and this results in the simple form
used above.
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It is often of interest to compute the amounts of each component present
in the ultracentrifuge cell directly from the gram-per-liter concentration pro-
file function. This can be done by using the equation:

qi =

∫ rb

rm

ci(r)vdr,

where qi is the total mass in grams of the given solute i, v is a constant
based on the geometry of the cell, rb is the radial position of the bottom of
the cell, and rm is the radial position of the top, or meniscus, of the solution
in the cell. For a cell 1.2 cm deep with a chord length of .33 cm at the radial
position rb = 7.2 cm while spinning, we have v = 1.2·2·arcsin(.33·7.2/2). It is
important to use the most accurate possible geometry constant v and bottom
radial position rb; when spinning, rb can be approximately 1% greater than
the value measured at rest. Finally note that this computation can be
confounded when the solute sticks to the the interior walls of the cell or
builds up excessively at the bottom of the cell.

The mathematical modeling software MLAB can be used to compute
the equilibrium constant K for the simple binding reaction X + Y ⇀↽ Z
occurring within the ultracentrifuge cell in many cases.

Let c1(r) denote the grams-per-liter concentration of the first solute sub-
stance X at radial position r, let c2(r) denote the grams-per-liter concen-
tration of the second solute substance Y at radial position r, and let c3(r)
denote the grams-per-liter concentration of the composite third solute sub-
stance Z at radial position r. Then the combined concentration distribution
function is c(r) = c1(r) + c2(r) + c3(r), where the grams-per-liter concen-
tration distribution of the ith solute is ci(r) = chi exp(AiNi(r

2 − r2
h)) for

i = 1, 2, 3.
Also, at any fixed radial position r, the stochiometric relationship K =

( c3(r)
M3

)/(( c1(r)
M1

)( c2(r)
M2

)) holds, whereMi denotes the molecular weight of solute
i for i = 1, 2, 3. Note that M3 = M1 +M2. Thus,

c3(r) =
M1 +M2

M1M2
Kc1(r)c2(r).

Let gi(r, x) := chi exp(AiMi(r
2 − r2

h)/(1 + BiMix)) for i = 1, 2, 3. Note
gi(r, c(r)) = ci(r). Now define f(c1, c2) := c1+c2+Kc1c2(M1+M2)/(M1M2).
Then, c(r) = root(x, 0, cmax, f(g1(r, x), g2(r, x)) − x) where cmax satisfies
cmax > maxr c(r). We thus have an implicit model for the c vs. r data
corresponding to the simple binding reaction X + Y ⇀↽ Z occurring in the
ultracentrifuge cell. The potentially-unknown parameters of this model are
c1h, c2h, M1, M2, B1, B2, A1, A2 and K. MLAB curve-fitting may now
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in principle be employed to estimate these parameters. In the case of a
self-associative dimerization reaction, this model simplifies with c1h = c2h,
M1 = M2, A1 = A2 and B1 = B2.

Now, if we measure the total concentration distribution with a UV scan-
ner or with a Rayleigh interferometer attached to the ultracentrifuge and
express the results as a table of (r, c) points, each of which gives the observed
concentration c at the corresponding specified radial position r in the cell,
then the root-form equation for c(r) given above can be used as a model to
fit these points. In this way, various parameters such as K, M1, M2, B1,
or B2 can, in principle, be determined by curve-fitting. Often ch1 and ch2

are not exactly known, and are also taken as fitting parameters. Generally,
the number of distinct fitting parameters must be minimized, however, in
order to obtain physically reliable estimates. Concentration can be mea-
sured in any of a number of different units. Fundamentally, we have fringe
numbers or optical densities, and such observations are readily convertible
by scaling to grams-per-liter concentration units. Note if K = 0, we have
two non-interacting substances in the cell, and estimating M1, M2, B1, and
B2 becomes feasible, In the example given here, however, we are interested
in estimating the equilibrium constant K.

Generally we cannot successfully estimate the equilibrium constant K
when K is small (say < .5 · 104,) because our model tends to become in-
creasingly ill-conditioned as K decreases. The exact limit depends on the
molecular weights, the initially-loaded amounts, and the virial coefficients
of the reactants.

There are several more “rules of thumb” that we should remember when
estimating the equlibrium constant K.

(1) The molecular weights M1 and M2 should be predetermined and
should not be fitting parameters. Any of a number of methods can be used
to determine M1 and M2; if sequence composition information is known, of
course, it should be used to compute the corresponding molecular weight
exactly. Similarly, the virial coefficients B1 and B2 should likewise be pre-
determined, if possible. (Note that once we have obtained M1, M2, B1, B2,
c1h, and c2h, we can subtract c1(r) + c2(r) from our data, and then fit g3 to
the result in order to estimate B3 and c3h if this is desired.)

(2) The value cmax should be as small as possible so as to minimize the
occurrence of overflows in the derivatives of c. This implies that relatively
dilute solutions of the reactants should be used. On the other hand, we
need to produce an adequate amount of Z material to be represented in
the c(r)-data. The speed of the ultracentrifuge should be chosen to obtain
a distribution of mass which is neither too “flat” nor too “sharp”, i.e.,
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material should not “pile-up” at the bottom of the cell. It may sometimes
be convenient to discard the data for radial positions near the bottom of the
cell in order to be able to reduce the value of cmax. It is generally wise to
discard the data near the bottom of cell in any event because the error in
measuring mass concentration is large near the boundary of the cell.

(3) It is generally useful to replace K by exp(L), where L = log(K), and
then fit to estimate L. This does not generally provide a more exact estimate
of K, but the normal theory standard errors computed for L are more likely
to be meaningful than are the same quantities forK when estimated directly.

Here is an example of using MLAB to estimate the equilibrium constant
for a simple binding reaction. Note we have also used the conservation-
of-mass relations for substance 1 (X) and for substance 2 (Y). Choosing
parameters to fit the computed masses of X and Y to the known initially-
loaded masses is a valuable device to improve our parameter estimates. This
can only be done, however, when accurate values of v and rb are avail-
able. (Another device that can help in obtaining more accurate estimates is
to simultaneously fit gram-per-liter concentration-profile data obtained at
equilibrium for several different rotor speeds.)

* rm = 6.7 /* minimum radius in cm */

* rb = 7.2 /* maximum radius in cm */

* rh = rm /* reference radius in cm */

* vc = 2*asin(.33/(2*rb)) /*angle of the cell wedge */

* vc=vc*1.2 /*volume constant, total solution vol.= (vc/2)*(rb^2-rm^2) cm^3 */

* r1 = rm:rb:.01 /* radial positions for curve-plotting */

* qv = 0.26 /* this term is 1 - zbar*rho */

* omega = 1047.2 /* corresponding to 10000 rpm machine rotation */

* R = 8.314*10^7 /* gas concentration */

* t = 298.15 /* absolute temperature */

* A1 = (qv*omega^2)/(2*R*t); A2=A1 /*Both A1 and A2 = 5.75119093E-6 */

* /* predetermined values for known parameters */

* B1 = 2*10^(-8); B2=10^(-9);

* M1 = 67000; M2=6800

* constraints q={9<lk, lk<40, ch1>0, ch2>0, ch1+ch2<1.4}

* fct g1(r,x)=ch1*exp(A1*M1*(r^2-rh^2)/(1+M1*B1*x))
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* fct g2(r,x)=ch2*exp(A2*M2*(r^2-rh^2)/(1+M2*B2*x))

* fct f(c1,c2)=c1+c2+exp(lk)*c1*c2*(M1+M2)/(M1*M2)

* fct c(r) = root(x,(ch1+ch2)/3,100000, f(g1(r,x),g2(r,x))-x)

* fct c1(r)=g1(r,c(r))

* fct c2(r)=g2(r,c(r))

* fct c3(r)=c3h(r,c(r))

* fct c3h(r,x)=x-g1(r,x)-g2(r,x)

* /*tm1, tm2 = total mass in grams of substances 1 and 2 */

* fct tm1()=integral(r,rm,rb,tm1z(r,c(r))*vc*r)

* fct tm1f(c1,c2,c)=c1+(M1/(M1+M2))*(c-c1-c2)

* fct tm1z(r,x) = tm1f(g1(r,x),g2(r,x),x)

* fct tm2()=integral(r,rm,rb,tm2z(r,c(r))*vc*r)

* fct tm2f(c1,c2,c)=c2+(M2/(M1+M2))*(c-c1-c2)

* fct tm2z(r,x) = tm2f(g1(r,x),g2(r,x),x)

* /*specify the total mass in grams of substances 1 and 2 */

* mass1[1]= .113689839;

* mass2[1]= .00613855051

* /* read-in the r vs. c(r) data to be modeled. */

* data = read(data.dat,1000,2)

* n=nrows(data);

*

* /* define the weights for fitting and normalize them to sum to 1 */

* zw=ewt(data); zw=zw/rowsum(zw)

* /*set initial guesses for k, ch1,and ch2 */

* k=10000; lk=log(k)

* ch1=.15;

* ch2=.035

* fit(lk,ch1,ch2), c to data with weight zw, tm1 to mass1, tm2 to mass2,\

: constraints q

final parameter values

value error dependency parameter

10.92859862 0.1533653124 0.9980490348 LK
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0.09847696449 0.003231742687 0.9986427864 CH1

0.01982622037 0.001226384415 0.9914474897 CH2

4 iterations

CONVERGED

best weighted sum of squares = 2.386287e-05

weighted root mean square error = 6.908382e-04

weighted deviation fraction = 5.217909e-03

R squared = 9.998792e-01

no active constraints

* exp(lk) /* k=exp(lk) */

= 55748.1007

* tm1() /* estimated total mass in grams of X */

= .113740813

* tm2() /* estimated total mass in grams of Y */

= 6.25476406E-3

* draw data, lt none, pt star, ptsize 0.01

* draw points(c,r1)

* top title "fit of c(r) to data"

* draw points(c1,r1), color red

* draw points(c2,r1), color green

* draw points(c3,r1), color yellow

* title "Y" at (7.15,.95) world

* title "Z" at (7.18,.36) world

* title "X" at (7.15,.095) world

* title "X+Y’2T=’RZ" at (6.75,1.55) world

* view
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The example above demonstrates the type of models involved in the
analysis of data obtained from the use of an ultracentrifuge. There are many
other useful experiments, with other equations (or differential equations)
describing the phenomena involved. MLAB is often useful in analyzing such
experiments, and may well succeed where other software fails.
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