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The MLAB advanced mathematical and statistical modeling system is
a useful tool for mathematical modeling as is demonstrated by the follow-
ing example. MLAB is a general-purpose system which can be applied to
model enzyme kinetics, multiple site binding equilibrium, or any of a wide
variety of other situations. Many such examples are given at the web-site
www.civilized.com. In this paper, we review some of MLAB’s capabilities
in a practical context of independent interest.
Spaces between the cells that make-up the human body are filled with

molecules that instigate a myriad of actions and reactions that form the
biochemical activity of life. Some of these molecules, such as calcium and
potassium ions, flow through channels within cell membranes to control
muscle and heart cell contraction, or to act as the stuff of nerve impulses.
Other molecules, such as estrogen and testosterone, have a more global role
in many physiological sub-systems of the body.
Mathematical modeling, either gross compartmental modeling, or spe-

cific physical chemistry modeling, such as chemical ligand-binding equilib-
rium or kinetic modeling, is one of the most powerful research tools available,
either for quantifying the reactions involving specific “signaling” molecules
or pharmaceutical agents that bind to receptor sites (which often occur as
molecules embedded in cell membranes) or for helping to elucidate the plau-
sible biochemical reactions that might be occuring. An example of this latter
use of modeling to explore biochemical mechanism is discussed below.
Interleukin-13(IL-13) is one of the most important of the many signal-

ing molecules that operate as a part of the immune system. IL-13 binds
to receptors on the surface of B-lymphocytes, causing them to produce
immunoglobulin-G molecules. Moreover, IL-13 binds to receptors on many
other types of cells, including non-immune-system cells, to help produce
the extremely-complex so-called inflammation response. IL-13 also binds to
receptors on certain tumor cells, and, for a time, both controls their prolif-
eration and instigates their death.
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The anti-tumor effect of IL-13 has been studied by many researchers
[1],[2]. A recent study by Vladimir Kuznetsov, Nicholas Obiri, and Raj Puri,
in which mathematical modeling played a central role, has shed light on IL-
13 binding with receptors on cells of a particular line of renal carcinoma [3].
This study involved a number of aspects of IL-13 behavior interacting with
a variety of receptors, but here we focus only on the binding of IL-13 to
receptors on the membranes of one particular type of tumor cell.

The data gathered specified the concentration of IL-13 bound to recep-
tors on the cell-membranes of a fixed known mass of tumor cells at various
times during the binding reaction. After due care to convert cpm units to
picomole(pM) units, subtract the effects of non-specific binding, and deal
with other complicating effects, we have the following data for four kinetic
binding experiments, labeled experiment 1, experiment 2, experiment

3 and experiment 4. For experiment 1, 15 pM of IL-13 ligand was added
to .5 × 106 tumor cells containing an unknown concentration of receptors.
For experiment 2, 70 pM of IL-13 ligand was added to .5× 106 tumor cells,
for experiment 3, 200 pM of IL-13 ligand was added to .5× 106 tumor cells,
and for experiment 4, 500 pM of IL-13 ligand was added to .5× 106 tumor
cells. Thus, the same unknown concentration of receptors is assumed to
be present in each experiment. In each experiment, the concentration in
picomoles of bound IL-13 ligand was measured at various times, as listed
below.
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time exp.1 exp.2 exp.3 exp.4

1: - - - - -
2: 0.03 - - 14 -
3: 0.05 - 4.9 - -
4: 0.06 1.5 - - -
5: 0.08 - - - 75
6: 0.17 - - 36 -
7: 0.18 - 12.6 - -
8: 0.25 2.66 - - -
9: 0.32 - - - 105
10: 0.33 - 16.1 - -
11: 0.4 - - 48 -
12: 0.41 3.12 - - -
13: 0.47 - - - 120
14: 0.56 3.6 - - -
15: 0.58 - - 50 -
16: 0.67 - 17.5 - -
17: 0.73 3.6 - - -
18: 0.75 - - 54 135
19: 1 3.6 18.9 - 150
20: 1.25 - - 58 155
21: 1.5 3.75 - - -
22: 1.67 - 20.3 - 145
23: 2 - - 52 -
24: 3 - 18.2 - -
25: 3.5 3.75 - - -
26: 5 3.75 - 52 -
27: 5.25 - 18.2 - -
28: 6.2 - - - 150
29: 9 - - 52 -

Also, three so-called dissociation experiments, labeled experiment 5,
experiment 6, and experiment 7, were done, where we started with a
known amount of IL-13 bound in various states, and then, in effect, removed
it as it dissociated, and observed the concentration of IL-13 measured in
picomoles that remained bound at various times. This data was:
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time exp.5 exp.6 exp.7

1: 0 3.96 52.8 157
2: 0.17 - 44.9328 -
3: 0.25 3.23928 - 138.0344
4: 0.33 - 46.3056 -
5: 0.42 - - 139.416
6: 0.5 3.19176 - -
7: 0.62 - - 137.061
8: 0.67 - 44.4048 -
9: 0.75 3.1284 - -
10: 1 - 44.1936 132.6179
11: 1.1 3.1284 - -
12: 1.4 - - 130.31
13: 1.7 3.12048 - -
14: 2 - 43.2432 129.839
15: 3 - - 129.996
16: 4 - 40.6032 -
17: 4.17 2.90664 - -
18: 5 2.772 - 123.245
19: 6 - - 120.262
20: 7 - - 114.1861
21: 7.5 - 37.3296 -
22: 9 - - 111.156
23: 11.8 - 34.32 -
24: 12.5 2.49084 - -
The MLAB mathematical and statistical modeling system was used to

check a variety of possible models by fitting them to the data. It is important
to note that, in each case, all seven sets of data were fit simultaneously using
a combined set of model functions with shared parameters These models
included one, two, and three independent receptor sites, as well as many
other plausible scenarios.

Each model was fit to the data by estimating the unknown parameters in
the model as those values that minimized the sum of the squared deviations
of the model predictions from the observed data values. This process itself
required careful attention to the mathematical formulation of the model, to
the weight-values employed, to the initial parameter guesses used, and to
the constraints imposed on the parameter values to help guide the fitting
process. The models often involved stiff differential equations which required
the use of MLAB for their effective treatment.

Since neither the simple one-site model or two-site model adequately fit
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the data, a cooperative binding model was tried. In that model, it was
postulated that the affinity constant characterizing the binding of the IL-13
ligand to a receptor was a (linear) function of the concentration of the bound
ligand, so that the binding affinity decreased (or increased) over time while
binding was occurring. Fitting this model showed cooperativity appeared
to be present and produced a better fit. In an attempt to explain this
cooperativity effect, various other possibilities were explored. The result of
weeks of work is presented below.
Kuznetsov ended-up proposing that a third molecule, dubbed the co-

receptor exists, and moreover, that the binding of IL-13 with both the pri-
mary receptor and the co-receptor to form a ternary complex caused the
release of a steady stream of instances of a fourth molecule called the in-
hibitor. These inhibitor molecules drift away from the cell membrane and
reversably bind to free IL-13 molecules (this binding serves to inactivate the
IL-13 molecules that are thus captured so they cannot bind to the receptor to
mediate any further associated biochemical events.) Since the inhibitor+IL-
13 ligand complex is assumed to be unable to bind to primary receptor
molecules, the IL-13 binding is effectively self-regulating; such binding pro-
vokes the appearance of inhibitor, which in turn, inhibits further binding
of IL-13 to the primary receptor! (This idea is consistent with the fact
that larger doses of IL-13 appear to have almost the same binding effect as
smaller doses. It also implies that the inhibitor (if it exists) may need to be
blocked in order to use IL-13 as a theraputic agent.)
It is important to note that the postulated molecules can be replaced by

other mechanisms. For example, the co-receptor could, in fact, be merely
a conformational change (possibly mediated in some manner) which allows
a reshaped bound complex molecule itself to link to either another IL-13
molecule or, perhaps, a free primary receptor molecule so as to inactivate its
target. The inhibitor may be produced via an enzyme reaction where the IL-
13+receptor+co-receptor ternary complex acts as an enzyme, or, perhaps,
the ternary complex acts to open a “channel” in the cell membrane that
allows the release of inhibitor molecules.
Although the modeling reported here has been fruitful in allowing some

mechanisms to be rejected as implausible, and in showing that certain other
mechanisms may be involved, further biochemical analysis is required to
make a more convincing case for any such specific suggestions. For example,
it is important to note that the model functions might be “overfit”, due to
the levels of uncertainty in the observed data, even though the visual results
are impressive. The role of modeling here has thus been to narrow the
plausible kinds of mechanisms that might be sought. We cannot expect more
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definitive results without more data from experiments tailored to expose
specific mechanisms, and the modeling presented here helps us design such
experiments. Note, however, that in the case where we are modeling such
a biochemical schema in order to quantify some particular behavior, like
a clearance rate or a metabolic conversion rate, the exact mechanism may
be less important than the accurate quantification provided by a suitable
model. (Models for glucose-insulin interaction fall in this category; they are
physiologically crude, but practically useful.)

Let L denote the IL-13 ligand, let R denote the primary receptor, and
let C denote the co-receptor. Also, let B denote the L + R complex, let G
denote the B + C complex, let H denote the inhibitor released due to the
action of the G material, and let X denote the (inhibited) L+H complex.

Thus, we have Kuznetsov’s model:

L+R ⇀↽ B

B + C ⇀↽ G

G → G+H

L+H ⇀↽ X

In both the kinetic binding experiments and the dissociation experi-
ments, the concentration of the total bound IL-13 ligand was observed, i.e.
the combined concentration of B and G. In fact, there still appears to be
a small amount of cooperativity present in the L + R ⇀↽ B reaction. This
is modeled by assuming that the association constant for this reaction is of
the form k1L

b with b < 1, which decreases as the concentration of free IL-13
decreases during the time of reaction. Note, however the initial association
constant increases as the initial amount of IL-13 ligand supplied increases.
Kuznetsov explains this cooperativity effect as an effect due to the rough
nature of the cell membrane which imposes a slowing of binding due to the
difficulty of diffusing the ligand into the “crevices” of the cell membrane.
(This diffusion effect is only apparent when several sets of kinetic experi-
mental data are fit simultaneously; a single set of data can be fit by a variety
of simpler models, but the schema proposed here is the only one found that
accomodates all the data.) Also, note that this model is surely not complete;
there is no mechanism postulated to scavage the inhibitor for example, so
that, as stated, our system would eventually be flooded with inhibitor, and
virtually all the IL-13 ligand would be bound with inhibitor.
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Let Lj(t) denote the concentration of free IL-13 ligand at time t in the
kinetic binding experiment j and let L0j = Lj(0), the initial concentration
of free IL-13 ligand. For our four binding experiments, we have L01 = 15,
L02 = 70, L03 = 200, and L04 = 500.
Let Rj(t) denote the concentration of free primary receptor at time t in the
kinetic binding experiment j and let R0 denote the initial concentration of
free primary receptor, which we take to be identical in all our experiments.
Let Cj(t) denote the concentration of free co-receptor at time t in the kinetic
binding experiment j and let C0 denote the initial concentration of free co-
receptor, which we take to be identical in all our experiments.
Let Hj(t) denote the concentration of free inhibitor at time t in the kinetic
binding experiment j. We assume that Hj(0) = 0.
Let Bj(t) denote the concentration of IL-13+receptor bound complex at
time t in the kinetic binding experiment j. We assume that Bj(0) = 0.
Let Gj(t) denote the concentration of IL-13+receptor+co-receptor bound
complex at time t in the kinetic binding experiment j. We assume that
Gj(0) = 0.
Let Xj(t) denote the concentration of IL-13+inhibitor bound complex at
time t in the kinetic binding experiment j. We assume that Xj(0) = 0.
Finally, let Aj(t) denote the ratio of the concentration of membrane bound
IL-13 ligand in either the form B or the form G at time t to the total
concentration of IL-13 ligand in the kinetic binding experiment j, so that
Aj(t) = (Bj(t) +Gj(t))/L0j with Aj(0) = 0.
We use the fraction bound because it is easier to compare the binding curves
from different experiments using fraction units. We have four such kinetic
binding experiments, so j = 1, 2, 3, 4.

Then, following the above stochiometric reactions, the algebraic and
differential equations that define these functions are:

dBj

dt
(t) = (k1L

b
j)LjRj − k

−1Bj −
dGj

dt
dGj

dt
(t) = k2BjCj − k

−2Gj

dHj

dt
(t) = k3Gj −

dXj

dt
dXj

dt
(t) = k4LjHj − k

−4Xj

Lj(t) = L0j −Bj(t)−Gj(t)−Xj(t)

Rj(t) = R0−Bj(t)−Gj(t)
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Cj(t) = C0−Gj(t)

Aj(t) = (Bj(t) +Gj(t))/L0j

The quantities k1L
b
j and k

−1 are the association and dissociation “con-
stants” for the reaction L + R ⇀↽ B. The quantities k2 and k

−2 are the
association and dissociation constants for the reaction B + C ⇀↽ G. The
quantity k3 is the association constant for the reaction G → G + H. The
quantities k4 and k

−4 are the association and dissociation constants for the
reaction L+H ⇀↽ X.

The values of L01, L02, L03, and L04 are the known values 15, 70, 200,
and 500, respectively. The parameters to be estimated are: R0, C0, k1, b,
k
−1, k2, k−2, k3, k4, k−4.

The three dissociation experiments are described by:

B → L+R

B + C ⇀↽ G

Again, for these dissociation experiments, the concentration of the total
bound IL-13 ligand was observed, i.e. the combined concentration of B and
G, was measured at various times while continually “washing” away the
non-membrane bound species.

Recall that we label the three dissociation experiments as experiments
number 5,6, and 7. Then for j = 5, 6, 7, we will have sets of functions that
compose our models for the three sets of dissociation data.

In fact, dissociation experiment 5 is based on kinetic binding experiment
1; in particular, dissociation experiment 5 started when a quasi-steady-state
was reached after about 5 hours of binding occurred in a copy of kinetic
binding experiment 1. That means we started with a concentration of L01
micromoles of IL-13 ligand, R0 micromoles of receptor, C0 micromoles of co-
receptor, and 0 micromoles of inhibitor, and after td := 5 hours, we began
washing off the non-membrane bound material and measuring the bound
IL-13 ligand. Thus the initial concentrations of B and G in experiment
5 are whatever was “inherited” from experiment 1! We know the sum of
these concentrations is 3.96 pM, since a measurement was made at the time
of starting the dissociation experiment, but we do not know the individual
concentrations of B and G separately.
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However, since MLAB allows auxilliary functions defined in terms of
other differential-equation-defined functions to appear in a set of functions
being fit to data, We can estimate these component concentrations sepa-
rately by fitting the function ZB5(t) = B1(t)−B05 to the point (td, 0) and
the function ZG5(t) = G1(t)−G05 to the point (td, 0) by varying the param-
eters B05 and G05! The parameters B05 and G05 will be thereby computed
as estimates of the values of B1(td) and G1(td), and these estimates may
be used as the initial values for the time-course functions that estimate the
concentrations of B and G in the model equations for dissociation exper-
iment 5. Note the constraint B05 + G05 = 3.96 should be approximately
correct.
Dissociation experiment 6 is based on kinetic binding experiment 3; in

particular, as with experiment 5, dissociation experiment 6 started after
about 5 hours of binding occurred in a copy of kinetic binding experiment
3. That means we started with a concentration of L03 micromoles of IL-
13 ligand, R0 micromoles of receptor, C0 micromoles of co-receptor, and
0 micromoles of inhibitor, and after reaching quasi-steady-state near time
td, we began washing off the non-membrane bound material and measuring
the bound IL-13 ligand. Thus the initial concentrations of B and G in
experiment 6 are whatever was “inherited” from experiment 3. The sum of
these initial concentrations was 52.8 pM.
Again, we can estimate these component concentrations separately by

fitting the function ZB6(t) = B3(t)−B06 to the point (td, 0) and the function
ZG6(t) = G3(t)−G06 to the point (td, 0) by varying the parameters B06 and
G06. The parameters B06 and G06 will be thereby computed as estimates
of the values of B3(td) and G3(td), and these estimates may be used as the
initial values for the time-course functions that estimate the concentrations
of B and G in the model equations for dissociation experiment 6. Note the
constraint B06 +G06 = 52.8 should be approximately correct.
Finally, dissociation experiment 7 is based on kinetic binding experiment

4; again, dissociation experiment 7 started after about 5 hours of binding
occurred in a copy of kinetic binding experiment 7; thus we started with a
concentration of L04 micromoles of IL-13 ligand, R0 micromoles of recep-
tor, C0 micromoles of co-receptor, and 0 micromoles of inhibitor, and after
about td hours, we began washing off the non-membrane bound material
and measuring the bound IL-13 ligand. Thus the initial concentrations of
B and G in experiment 7 are whatever was “inherited” from experiment 4.
The sum of these initial concentrations was 157 pM.
Just as before, we can estimate these component concentrations sepa-

rately by fitting the function ZB7(t) = B4(t)−B07 to the point (td, 0) and

9



the function ZG7(t) = G4(t)−G07 to the point (td, 0) by varying the param-
eters B07 and G07. The parameters B07 and G07 will be thereby computed
as estimates of the values of B4(td) and G4(td), and these estimates may be
used as the initial values for the time-course functions that estimate the con-
centrations of B and G in the model equations for dissociation experiment
7. Note the constraint B07 +G07 = 157 should be approximately correct.

Now for the three dissociation experiments numbered 5,6, and 7, we may
take j = 5, 6, 7, and state the following functions that compose our model
for the dissociation data.
Let Bj(t) denote the concentration of IL-13+receptor bound complex at
time t in the kinetic dissociation experiment j. We specify the initial value
Bj(0) to be B0j , which will be estimated as discussed above.
Let Gj(t) denote the concentration of IL-13+receptor+co-receptor bound
complex at time t in the kinetic dissociation experiment j. We specify the
initial value Gj(0) to be G0j , which will be estimated as discussed above.
Let Lj(t) denote the concentration of free IL-13 ligand at time t in the ki-
netic dissociation experiment j. We assume that Lj(0) = 0.
Let Cj(t) denote the concentration of free co-receptor at time t in the kinetic
dissociation experiment j Thus Cj(t) = C0 − Gj(t), where C0 is the inital
concentration of co-receptor (before any IL-13 ligand is added.)
Finally, let Aj(t) denote the ratio of the concentration of membrane bound
IL-13 ligand in either the form B or the form G at time t to the total con-
centration of IL-13 ligand in the kinetic dissociation experiment j, so that
Aj(t) = (Bj(t) +Gj(t))/(B0j +G0j).

Then the algebraic and differential equations that define these functions
are:

dBj

dt
(t) = −k

−1Bj −
dGj

dt
dGj

dt
(t) = k2BjCj − k

−2Gj

Cj(t) = C0−Gj(t)

Aj(t) = (Bj(t) +Gj(t))/(B0j +G0j)

The quantity k
−1 is the dissociation constant for the reaction B → L+R.

The quantities k2 and k−2 are the association and dissociation constants for
the reaction B + C ⇀↽ G. Note the constants C0, k

−1, k2, and k
−2 also
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appear in the models for the kinetic binding experiments. The additional
parameters B05, B06, B07, G05, G06, and G07 also appear in these functions
as initial conditions. They are defined by the auxillary functions:

ZB5(t) = B1(t)−B05

ZG5(t) = G1(t)−G05

ZB6(t) = B3(t)−B06

ZG6(t) = G3(t)−G06

ZB7(t) = B4(t)−B07

ZG7(t) = G4(t)−G07

The parameters to be estimated are: C0, k
−1, k2, k−2, B05, B06, B07,

G05, G06, and G07.

Overall then, we have seven sets of data to be fit by functions defined by
seven corresponding sets of differential-algebraic equations, with 16 unknown
shared parameters C0, R0, b, k1, k−1, k2, k−2, k3, k4, k−4, B05, B06, B07,
G05, G06, and G07 to be estimated. The MLAB commands (which were
entered in a do-file) and the results are given below. It is important to note
that this is a synthesized presentation; the actual modeling required many
do-files, and many strategic steps to obtain the final results. Also, please
note the small mathematical devices introduced below. In particular, we
define the function p to avoid computing the non-integral power of a (small)
negative number; in theory, Lj should never be less than 0, but numerical
error can be introduced during solving that violates this constraint. Also,
note the use of appropriate weights and constraints in the MLAB do-file
below

/* do-file: il13.do = fit Kuznetsov’s model to experimental data */

fct p(L,b)=if L<0 then 0 else L^b

/* Model functions for Experiment 1 */

fct B1’t(t) = k1*p(L1(t),1+b)*(R0-B1-G1) -km1*B1 -k2*B1*(C0-G1) +km2*G1

fct G1’t(t) = k2*B1*(C0-G1) -km2*G1

fct H1’t(t) = k3*G1 -k4*L1(t)*H1 +km4*X1

fct X1’t(t) = k4*L1(t)*H1 -km4*X1
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fct L1(t) = L01-B1-G1-X1

fct A1(t) = (B1+G1)/L01

init B1(0)=0

init G1(0)=0

init H1(0)=0

init X1(0)=0

/* Model functions for Experiment 2 */

fct B2’t(t) = k1*p(L2(t),1+b)*(R0-B2-G2) -km1*B2 -k2*B2*(C0-G2) +km2*G2

fct G2’t(t) = k2*B2*(C0-G2) -km2*G2

fct H2’t(t) = k3*G2 -k4*L2(t)*H2 +km4*X2

fct X2’t(t) = k4*L2(t)*H2 -km4*X2

fct L2(t) = L02-B2-G2-X2

fct A2(t) = (B2+G2)/L02

init B2(0)=0

init G2(0)=0

init H2(0)=0

init X2(0)=0

/* Model functions for Experiment 3 */

fct B3’t(t) = k1*p(L3(t),1+b)*(R0-B3-G3) -km1*B3 -k2*B3*(C0-G3) +km2*G3

fct G3’t(t) = k2*B3*(C0-G3) -km2*G3

fct H3’t(t) = k3*G3 -k4*L3(t)*H3 +km4*X3

fct X3’t(t) = k4*L3(t)*H3 -km4*X3

fct L3(t) = L03-B3-G3-X3

fct A3(t) = (B3+G3)/L03

init B3(0)=0

init G3(0)=0

init H3(0)=0

init X3(0)=0

/* Model functions for Experiment 4 */

fct B4’t(t) = k1*p(L4(t),1+b)*(R0-B4-G4) -km1*B4 -k2*B4*(C0-G4) +km2*G4

fct G4’t(t) = k2*B4*(C0-G4) -km2*G4

fct H4’t(t) = k3*G4 -k4*L4(t)*H4 +km4*X4

fct X4’t(t) = k4*L4(t)*H4 -km4*X4

fct L4(t) = L04-B4-G4-X4

fct A4(t) = (B4+G4)/L04

init B4(0)=0

init G4(0)=0
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init H4(0)=0

init X4(0)=0

/* Model functions for Experiment 5 */

fct B5’t(t) = -km1*B5 -k2*B5*(C0-G5) +km2*G5

fct G5’t(t) = k2*B5*(C0-G5) -km2*G5

fct A5(t) = (B5+G5)/(B05+G05)

fct ZB5(t) = B1(t)-B05

fct ZG5(t) = G1(t)-G05

init B5(0)=B05

init G5(0)=G05

/* Model functions for Experiment 6 */

fct B6’t(t) = -km1*B6 -k2*B6*(C0-G6) +km2*G6

fct G6’t(t) = k2*B6*(C0-G6) -km2*G6

fct A6(t) = (B6+G6)/(B06+G06)

fct ZB6(t) = B3(t)-B06

fct ZG6(t) = G3(t)-G06

init B6(0)=B06

init G6(0)=G06

/* Model functions for Experiment 7 */

fct B7’t(t) = -km1*B7 -k2*B7*(C0-G7) +km2*G7

fct G7’t(t) = k2*B7*(C0-G7) -km2*G7

fct A7(t) = (B7+G7)/(B07+G07)

fct ZB7(t) = B4(t)-B07

fct ZG7(t) = G4(t)-G07

init B7(0)=B07

init G7(0)=G07

/* Set constants */

L01=15; L02=70; L03=200; L04=500

/* Set parameter guesses near Kuznetsov’s best values */

R0= 2990

C0= 2990

B= 0.109050928

K1= 0.0003001336855

KM1= 4.8

K2= 0.0001216742301
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KM2= 0.026

K3= 0.7673768901

K4= 5

KM4= 0.07631566379

B05= 0.8712

G05= 3.0888

B06= 10.15

G06= 47.85

B07= 21

G07= 129

/* Read-in the data and construct the data matrices D1-D7, and Z */

bd=read(bind,100,5);

dd=read(diss,100,4);

D1=0&compress(bd col (1,2),2); D1 col 2=(D1 col 2)/L01

D2=0&compress(bd col (1,3),2); D2 col 2=(D2 col 2)/L02

D3=0&compress(bd col (1,4),2); D3 col 2=(D3 col 2)/L03

D4=0&compress(bd col (1,5),2); D4 col 2=(D4 col 2)/L04

D5=compress(dd col (1,2),2); D5 col 2=(D5 col 2)/D5[1,2]

D6=compress(dd col (1,3),2); D6 col 2=(D6 col 2)/D6[1,2]

D7=compress(dd col (1,4),2); D7 col 2=(D7 col 2)/D7[1,2]

delete bd,dd

Z=5&’0

/* Define the constraint set Q */

constraints Q={ \

B05+G05>3.5, B05+G05<4.5, \

B06+G06>44, B06+G06<65, \

B07+G07>140, B07+G07<170, \

b>0, b<.13, \

R0>1500, R0<3250, \

C0>1500, C0<3250, \

k1>0, k1<.01, \

km1>3, km1<5, \

k2>0, \

km2>.02,km2<.03, \

k3>.1, k3<2, \

k4>.5, k4<5, km4>0, km4<5 }
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/*Set-up weight vectors */

wt1=d1 col 2; wt1[1]=wt1[6]

wt2=d2 col 2; wt2[1]=wt2[6]

wt3=d3 col 2; wt3[1]=wt3[6]

wt4=d4 col 2; wt4[1]=wt4[6]

wz5=list(1/3.96)

wz6=list(1.33/58)

wz7=list(2/150)

/* Do the curve-fitting - fit our model to the weighted data. */

errfac=.00001

method=gear

maxiter=40

lsqrpt =11

fit(R0,C0,b,k1,km1,k2,km2,k3,k4,km4,B05,G05,B06,G06,B07,G07), \

A1 to D1 with wt wt1, \

A2 to D2 with wt wt2, \

A3 to D3 with wt wt3, \

A4 to D4 with wt wt4, \

A5 to D5, \

A6 to D6, \

A7 to D7, \

ZB5 to Z with wt wz5, \

ZG5 to Z with wt wz5, \

ZB6 to Z with wt wz6, \

ZG6 to Z with wt wz6, \

ZB7 to Z with wt wz7, \

ZG7 to Z with wt wz7, constraints Q

The output of this do-file produced by the fit statement follows.

Begin iteration 1 bestsosq=6.006547e-001

Marquardt-Levenberg line search probe: eps = 1.000000e-010

sum of squares = 0.04582580707113

Begin iteration 2 bestsosq=4.582581e-002

Marquardt-Levenberg line search probe: eps = 1.000000e-010

sum of squares = 0.01204906773736

Begin iteration 3 bestsosq=1.204907e-002

Marquardt-Levenberg line search probe: eps = 1.000000e-010

sum of squares = 0.01204619061608
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Marquardt-Levenberg line search probe: eps = 1.624368e-003

sum of squares = 0.01204625000369

Marquardt-Levenberg line search probe: eps = 1.624368e-001

sum of squares = 0.01204635763616

Marquardt-Levenberg line search probe: eps = 1.624368e+001

sum of squares = 0.01204821700603

Marquardt-Levenberg line search probe: eps = 1.624368e+002

sum of squares = 0.01204894914491

Marquardt-Levenberg line search probe: eps = 1.624368e+003

sum of squares = 0.0120490553849

final parameter values

value error dependency parameter

3250 12182.85837 0.9999997438 R0

3250 13462.31276 0.9999999084 C0

0.1049589281 0.05167059669 0.999952039 B

0.000296334322 0.0010658965 0.999999698 K1

5 0.6762822057 0.9997546225 KM1

0.000106107999 0.00044342822 0.999999907 K2

0.02302618885 0.001314873569 0.9332693779 KM2

0.814427359 0.08304489826 0.9996683989 K3

5 229.3106734 0.9998679795 K4

0.3069022341 30.49902014 0.9998620474 KM4

0.8770250533 0.06970645033 0.9082921013 B05

3.144308218 0.2154997399 0.983383752 G05

9.141654224 0.7304766809 0.9838603169 B06

46.6525215 2.285711761 0.9982697999 G06

21.15065076 1.60517971 0.9940830812 B07

118.8493492 6.223070522 0.9995980458 G07

3 iterations

CONVERGED

best weighted sum of squares = 1.204619e-002

weighted root mean square error = 1.441156e-002

weighted deviation fraction = 1.429964e-002

lagrange multiplier[5] = -4.110273827e-006

lagrange multiplier[10] = 5.569797706e-008

lagrange multiplier[12] = 7.365789198e-008

lagrange multiplier[16] = 0.001165085076

lagrange multiplier[23] = 2.823709132e-006

The graphic results of the above curve-fitting are shown below. MLAB
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was used to produce the pictures presented below, but we have elided the
actual commands involved. The starting parameters above are Kuznetsov’s
final result; here we have adjusted all sixteen parameters simultaneously
with different weights for the data than those used by Kuznetsov to obtain
a different fit. The fact that many different sets of parameter values can be
found which yield good fits under the same or slightly different conditions is
to be expected. This modeling problem is ill-conditioned, and, in particular,
there are high correlations among certain of the parameters that makes the
determination of the “true values” of those parameters impossible. Other
parameters, however, do not change very much, i.e. are stable across various
fitting experiments, and we have somewhat more faith in these parameters.
The important point here is that Kuznetsov’s model does admit a good fit
with physically-plausible parameter values, whereas other competing models
failed to do so. We can find other, mathematically-”better” fits if we relax
our constraints, but these fits have implausible parameter values.
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The picture below shows the nature of the kinetic curves of Kuznetsov’s
model in the particular case of 200 pM of IL-13 initially introduced. The
solid-line curve is B, the dashed-line curve is G, and the dotted-line curve
is X. (Do you think the fact that the three kinetic curves presented appear
to intersect at the same point has any significance?)
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