
The Hodgkin-Huxley Nerve Axon Model

Gary D. Knott

Civilized Software Inc.

12109 Heritage Park Circle

Silver Spring MD 20906

phone:301-962-3711

email:knott@civilized.com

URL:www.civilized.com

August 27, 2015

0.1 The Hodgkin-Huxley Model

This technical note shows the use of the MLAB mathematical and statistical modelling system for
solving the Hodgkin-Huxley differential equations for arbitrary initial conditions.

The prevailing model of a nerve axon membrane is a pair of theories concerning the nature of the
axon membrane with respect to active (“pumping”) and passive (diffusion) steady-state transport
of various ions across the membrane and with respect to time-dependent “gate” opening and closing
which controls the active passage of ions through such “open gates”.

It is postulated that the membrane in a given state has a certain permeability for each given ion,
and that this membrane state is determined by the electrochemical potential across the membrane.

The permeability, PC , of a membrane for a particular chemical species, C, is a measure of the ease
of diffusion of C across the membrane in the presence of a concentration difference on either side
of the membrane. In particular, upon entering the membrane, one C-molecule will travel, on the
average, (PCaF/(βRT ))Em cm/sec transversely across the membrane, where PC = uβRT/(aF ),
and Em, u, β, R, T , a, and F are defined as follows.

Em = the electric potential difference across the membrane, measured in volts.

u = the electric mobility of C in the membrane ≈ .001 (cm/sec)/(volt/cm) for sodium or potassium.
This is the average velocity of a C-molecule due to an electric potential difference of one
volt/cm (e.g., for a 100 Angstrom membrane, the reference potential difference is 1µvolt
between the inside and the outside). As the potential difference, Em, changes, the mobility
of C changes. For a −60mv potential difference across a 100 Angstrom membrane, u ≈

600 (cm/sec)/(volt/cm).
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β = the partition coefficient between the membrane and solution ≈ .003. β is the ratio of the
concentration of C in the solution to the concentration of C in the membrane itself in steady-
state. β is a measure of the relative affinity of the membrane substance for C-molecules with
respect to the neighboring solution.

a = the thickness of the membrane, about 100 Angstroms.

F = Faraday’s constant, 96486.7 coulomb/mole. F is Avogadro’s number times the charge in
coloumbs of a proton.

R = the gas constant, 8.31434 joule/(degree/mole). R is Avogadro’s number times Boltzmann’s
constant.

T = temperature in degrees Kelvin.

For a given ionic species, C, which is placed in unequal concentrations on either side of an idealized
membrane, there will be a net diffusion of C in the direction of lower concentration. This diffusion
changes any existing electric potential field, since charge is being redistributed. Other species
may be diffusing as well, but regardless of the total complexity, the ionic current of C ions will
be zero just when the electric potential difference across the membrane is sufficient to induce
a compensating counter drift of C-ions in the direction of lower concentration. The potential
difference of the potential in the “in”-compartment minus the potential in the “out”-compartment
which leads to a net C-ion current of zero is given by the so-called Nernst potential difference,
EC = (ZRT/F ) log(Cout/Cin) volts, where Z is the valence of C (+1 for sodium and −1 for chlorine)
and Cin and Cout are the concentrations of C in the inside and outside compartments. Note when
Cout = Cin, EC = 0. The Nernst potential difference is essentially obtained by converting the
concentration difference Cout − Cin from Moles/liter units to Volts/liter units using knowledge of
Faraday’s constant.

The actual electrical potential across the membrane is a function of the relative concentrations
of each species present, and it is this total potential, together with its diffusion tendency, which
determines how each ion would move. The total potential can be computed using the Goldman
equation given below. Potential is defined so that positive charge flows towards points of lower
potential, while negative charge flows towards points of higher potential. The membrane potential
difference at a point is defined as the potential at the point minus the potential at a reference point
in the outside solution.

For any given initial concentrations of various species and given time-course changes of membrane
permeabilities for these species, there will be an associated change in total potential and a varying
ionic current flow which, in principle, we can determine with appropriate equations. (We ignore the
added complication of concentrations changing due to the diffusion of the solute, or of hydrostatic
pressure gradients arising when solute diffusion is not possible.)

A full discussion of nerve membranes is given in “Ionic channels of excitable membranes” by Bertil
Hille (Sinauer Associates, Sunderland, Mass, 1984).

For a giant squid nerve axon it has been experimentally determined that the chemical species of
interest are potassium ions, sodium ions, chloride ions, and various other ions of lesser importance.
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Ions of all these less-significant species are collectively lumped together and called “leakage” ions.
Each of the various leakage ions have differing permeabilities; the result is that the permeability
for leakage ions is an “average” which compensates for the various differing permeabilities actually
involved. Moreover, some of the leakage ions are negative and some are positive. We shall assume
that our “average” leakage ion is negative, and that the strength of an ionic current of leakage ions
is diminished to compensate for this fiction. The resting axon membrane of an “average” squid has
permeabilities in cm/sec units for these species which are given in the table below with the resting
concentrations in mmoles/liter.

inside outside resting permeability potential difference

K(+) 400 10 6× 10−6 −72mV
Na(+) 50 460 8× 10−9 55mV

leakage(−) 45 540 −50mV

These values lead to a zero net ionic current in the resting state. The total resting state potential
difference, Er, based on the Goldman equation works out to −60mv. The Goldman equation in
this case is:

Er = log((PKKout + PNaNaout + PLLin)/(PKKin + PNaNain + PLLout))RT/F

volts, where L denotes “leakage” ions. This is valid only when there is zero net ionic current. Here
Kin and Kout denote the concentration of potassium in the “in” and “out” compartments, Nain and
Naout denote the concentration of sodiium in the “in” and “out” compartments, and Lin and Lout

denote the concentration of leakage ions in the “in” and “out” compartments. The coefficients PK ,
Pna, and PL are the membrane permeabilities of potassium, sodium, and leakage ions respectively.
Note the “in” and “out” concentrations of the leakage ions are “reversed” because the leakage ions
have negative valence.

The above state cannot be indefinitely maintained by a passive membrane which allows each species
to pass at a non-zero rate. Even though the net ionic current is zero, there are non-zero sodium,
potassium, and leakage currents in the resting state. An additional mechanism is postulated,
namely a “sodium pump” which actively transports sodium ions from the inside to the outside to
balance the resting state inward-diffusion, and a “potassium pump” which transports potassium
ions from the outside to the inside to balance the resting state outward-diffusion.

There is certainly such mechanisms present in the axon membrane but their precise chemical natures
are not competely known. The primary pump is the sodium-potassium ATPase pump that brings
two potassium ions inside for every three sodium ions that are pumped-out. The energy to drive
this pump depends upon the conversion of ATP to ADP . A discussion of research results about
the pumping mechanism as of 1974 can be found in “The (Na+ +K+) activated enzyme system
and its relationship to transport of Sodium and Potassium” by Jens Chr. Skou, pp. 401:434 of
Quarterly Reviews of Biophysics, Vol. 7, No. 3, July 1974.

Conductance is merely the reciprocal of resistance. It is a measure of the ability of a material
to carry a particular ionic or electric current. Conductance is measured in Ω−1/cm2 units. The
potassium conductance of one cm2 of axon membrane is denoted by gK , The sodium conductance
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of one cm2 of axon membrane is denoted by gNa, and the leakage ion conductance of one cm2 of
axon membrane is denoted by gL. These values are, in general, functions of the potential difference

history of the membrane.

Ohm’s law holds for ionic current flow, but since there is zero net current for the ionic species, C,
when the voltage is exactly the Nernst potential, EC , for C, we have the C-ion current is given by
IC = gC(Em−EC), where Em is the total membrane potential. This means IC is 0 when Em = EC ,
and in any case, the C-ionic current is gC(Er − EC) in the resting state where Er is the resting
state cross-membrane current. Ohm’s law applies here by convention, since gC is determined in
any state, just so IC = gC(Em − EC) is true. Here C is either K (potassium), Na (sodium), or L
(leakage ions).

The conductance, gC , and the permeability, PC , for a given ionic species, C, with charge Z, are
related as follows.

PC = gCRT (Em − EC) · (exp(ZEmF/(RT ))− 1)/((Cout − Cinexp(ZEmF/(RT )))/Z/(F 2Em)),

for Cout −Cin exp(ZFEm/(RT )) 6= 0, where Em, EC , F , R, T , Cout, and Cin are as defined above.
Note this equation relates PC and gC . Em, Er and EC are here measured in volts.

The Hodgkin-Huxley model of an axon membrane is a mathematical description of the potential
difference or voltage across the membrane which changes as a function of time in response to various
perturbations of potential established with an associated applied current. It was presented in the
Journal of Physiology, Vol. 117, pp. 500:544, 1952.

This description is in the form of an analogous circuit which in turn can be characterized by a set
of non-linear differential equations. These equations contain an empirically adequate description
of the feedback system which changes the conductances (or equivalently, the permeabilities) of the
membrance as a function of time and potential difference.

The circuit merely contains the three main ionic current circuits in parallel together with the
observed membrane capacitance.
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Empirically we have the emf values EK ≈ −72mV, ENa ≈ 55mV, and EL ≈ −50mV.

The values gK , gNa, and gL are the conductances of the membrance for potassium, sodium, and
leakage ions respectively. gK and gNa are functions of time and voltage, while gL is constant.

The sign convention for current is such that a net flow of positive ions from inside to outside
is a positive current. This is the “electron” convention as opposed to the conventional Franklin
convention. Thus a net flow of positive ions from outside to inside, or a net flow of negative ions
from inside to outside is a negative current. Here current is measured in µAmperes per cm2, and
Em, EK , ENa, and EL are measured in mvolts.

The values of EK , ENa, and EL given above imply that independently in the resting state, we
would have a nearly-zero sodium current, a nearly-zero potassium current, and a zero leakage ion
current. The sodium and potassium currents just balance the corresponding pump currents.

These circuits are connected in parallel however, and thus the total driving potential applied to
sodium ions is Em − ENa, the total driving potential applied to potassium ions is Em − EK , and
the total driving potential applied to leakage ions is Em − EL. According to Kirchoff’s law, the
currents into any point must sum to zero, so these three ionic currents must sum to 0. From
Ohm’s law as discussed above, the sodium current, INa, is gNa(Em−ENa), the potassium current,
IK , is gK(Em − EK), and the leakage ion current, IL, is gL(Em − EL). But, in the resting state,
IK + INa + IL = 0, so Em = (gNaENa + gKEK + gLEL)/(gNa + gK + gL). In the resting state, Em

has been determined experimentally to be about −60mV, gNa has been determined to be about
.0106092 and gK is about .3666445, so we may define

gL = (gNa(ENa + 60) + gK(EK + 60))/(−60− EL) ≈ .3179676.

(Usually, gL is set to .3, and EL is computed to yield a zero current, but we follow the opposite
convention.)
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Thus, for our “average” axon, the total sodium driving potential is −115mV and we have a negative
sodium current, the total potassium driving potential is 12mV and we have a positive potassium
current, and the total leakage ion driving potential is −10mV and we have a negative leakage ion
current.

The sodium current is approximately −1.22mA, the potassium current is about 4.4mA, and the
leakage ion current is about −3.18mA, and, of course, the sum is zero.

Of course, as these currents flow, the concentration-based emf’s EK , ENa, and EL change; however
the pumping devices postulated before are assumed to maintain a 1.22µA sodium current and a
−4.4µA potassium current which forces leakage ions to remain in place in order to keep charge
balanced in both the inside and the outside compartments. Thus in the resting state there is zero
net ionic current across the membrane, and zero individual ionic currents as well. The Hodgkin-
Huxley model does not include the pump current, so although there is zero net current in the
resting state, the individual ionic currents are presented as computed above.

We may apply a time-varying current, −Ia, across the membrane as a stimulus. This can be achieved
by the feedback-controlled circuit shown below which applies whatever time-varying voltage, Va,
across the membrane is needed to achieve the current −Ia(t) at time t. Here time is measured in
milliseconds.

Thus, in general, treating the “inside” as a junction of our five parallel circuits, we have the five
currents −Ia, IK , INa, IL, and Ic, summing to 0, where Ic is the current across the membrane
due to the capacitance c and the applied current Ia is taken oppositely-signed from the other four
circuit currents. Altogether we have Ia = IK + INa + IL + Ic.

Now the voltage drops in the [Va, capacitor] loop sum to zero, so −Va + Q/c = 0 where Q is the

time-varying charge difference in the “plates” of the membrane capacitor. And we have
dQ

dt
= Ic,
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so −
dVa

dt
+

Ic
c

= 0. Thus −Ic = cV ′

a and Va is just the total membrane potential difference Em!

And then Ic = c(dEm/dt), where c ≈ 1µfarad/cm2. Thus, we obtain

c(dEm/dt) = Ia − gK(Em − EK)− gNa(Em − ENa)− gL(Em − EL).

The Hodgkin-Huxley model assumes that the emf’s EK , ENa, and EL, and the conductance gL,
are constant, but that the conductances gK and gNa are not constant, but rather are functions of
the membrane potential difference history.

A change in gK corresponds to a change in the permeability of the membrane for potassium and
similarly for gNa. The physical idea stated below underlying the Hodgkin-Huxley specification of
how gK and gNa change is, by itself, incorrect, (see Armstrong, C., Physiological Reviews, Vol. 61,
pp. 644:683, 1981). However, the associated equations adequately serve the purpose of defining gK
and gNa as functions of time and membrane potential difference.

The Hodgkin-Huxley definition of gK and gNa can be “explained” as follows.

Let the opening of a potassium “channel” which allows potassium to pass through the membrane
involve j events. When j = 4, for example, we have (inside) K ⇔ K ′ ⇔ K ′′ ⇔ K ′′′ ⇔ K ′′′′

(outside), and let us imagine that each such event is enabled by a K-gate molecule in the on-state.
In other words, we imagin a potassium channel is composed of j gate-molecules, all of which must
be in the on-state for the channel to be open. If n(t, E) is the proportion of K-gate molecules
which are in the on-state at time t and membrane potential difference E, then nj is the probability
that any given potassium channel is open; this probability is proportional to the probability that
a potassium ion approaching the membrane will succeed in passing through. Note that j K-gate
molecules might actually be one K-gate molecule which assumes 2j states, only one of which is
“open”.

Suppose that when all the K-gate molecules are in the on-state, the associated potassium conduc-
tance of the membrane is ḡK . In general, then, the potassium conductance of the membrane at
voltage E and time t is gK = ḡKnj where 0 ≤ n ≤ 1.

Suppose further, that K-gate molecules switch reversibly between the on-state and off-state fol-
lowing simple first-order kinetics; so that: dn/dt = φ(αn(1− n)− βnn), where φ is a temperature
compensating factor, and where the “rate constants” αn and βn are functions of voltage only!
The factor φ = 3(T−6.3)/10, where T is the temperature in degrees Celsius. Hodgkin and Huxley
“guessed” that αn(E) = −.01(50+E)/(e−(50+E)/10 − 1) and βn(E) = .125e−(60+E)/80 by extensive
numerical simulation and curve-fitting. The functions αn and βn are chosen to “work”; their basic
form was obtained from theoretical considerations, assuming that the potential across the mem-
brane acts on charged particles (the gate molecules) to move them in and out of the way within
the channels in the membrane.

For sodium, suppose there are bothNa(1)-gate molecules andNa(2)-gate molecules, and letm(t, E)
be the proportion of Na(1)-gate molecules in the on-state, and let h(t, E) be the proportion of
Na(2)-gate molecules in the on-state, and finally, suppose opening a sodium channel across the
membrane requires p Na(1)-events and q Na(2)-events. Thus, gNa = ḡNam

phq, where ḡNa is the
sodium conductance when all the Na(1) and Na(2) gate molecules are in the on-state.
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As before suppose that the Na(1) and Na(2) gate molecules are switching between their on and
off states following first order kinetics, so that dm/dt = φ(αm(1 − m) − βmm), and dh/dt =
φ(αh(1 − h) − βhh), where again the rate constants αm, βm, αh, and βh are functions of the
potential difference, E, which have been empirically chosen as:

αm(E) = −.1(35 + E)/(e−(35+E)/10 − 1),

βm(E) = 4e−(60+E)/18,

αh(E) = .07e−(60+E)/20, and

βh(E) = 1/(e−(30+E)/10 + 1).

The constants ḡK and ḡNa are approximately 36mΩ−1/cm2 and 120mΩ−1/cm2 respectively.

For a discussion of knowledge and theory about the nature of the ionic channels up to 1977, see
“Ionic channels and gating currents in excitable membranes” by Werner Ulbricht, pp. 7:31 in Annual
Review of Biophysics and Bioengineering, Vol. 6, 1977, and “Kinetics of channel gating in excitable
membranes” by Leon Goldman, pp. 491:526 of Quarterly Reviews of Biophysics, Vol. 9, No. 4,
Nov. 1976.

In general we may have an initial state where a “preconditioning” ionic current, I0, has been applied
for a time sufficient to establish a new steady-state. Since in steady state, dEm/dt = 0, for any
I0-value we have the resulting steady-state voltage, Ess, given by Ess = root

E
(IK + INa + IL − I0).

Also, initially we assume n, m, and h are such that dn(0)/dt = dm(0)/dt = dh(0)/dt = 0, when
αn, βn, αm, βm, αh, and βh are determined by the steady-state voltage, Ess.

Thus, we have: n(0) = nss(Ess), m(0) = mss(Ess), and h(0) = hss(Ess) where,

nss(E) = αn(E)/(αn(E) + βn(E)),

mss(E) = αm(E)/(αm(E) + βm(E)), and

hss(E) = αh(E)/(αh(E) + βh(E)).

Thus from Ohm’s Law we have the steady-state voltage Ess that results in a net 0 current with a
“current-clamp” of I0 µA.

Ess(I0) = root
E

(ḡNamss(E)phss(E)q(E − ENa) + ḡKnss(E)j(E − EK) + gL(E − EL)− I0),

and Em(0) = Ess(I0).

The Hodgkin-Huxley model has j = 4, p = 3, and q = 1.

Note that it is possible to choose I0 so as to have Em(0) be any desired steady-state voltage, V ,
namely: I0 = rootI(Ess(I)−V ). Such a choice for I0 represents a so-called voltage-clamp situation.

The stimulus current, Ia(t), is a current which varies as desired from the steady-state applied
current I0. Ia(0) need not equal I0. The interpretation of this is that we have accomodated the
axon membrane to the current I0, and then instantaneously switched the applied current to be
Ia(0). Of course the variables, n, m, and h are accomodated to Ess(I0), not Ess(Ia(0)), so they
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will begin to change in response to this new voltage. Slightly more realism can be had by choosing
Ia(t) = I0 + (I1(t)− I0)(if t < s then (1− exp(−kt)) else (1− exp(−ks)) exp(−k(t− s))), for some
new current function, I1, which starts at time 0 and replaces I0 at some “rise time” rate k, and
then is cutoff at time s and decays to zero at the rate k.

Finally, it is possible to apply an impulse current which changes Em(0) by some desired amount,
Vi, without allowing time for n(0), h(0) and m(0) to change. In this situation, our initial condition
becomes Em(0) = Ess(I0) + Vi.

We have now given the complete Hodgkin-Huxley model for the giant squid axon membrane. There
are various improvements; notably the Adelman-FitzHugh extension; however we shall suppose here
that a “naked” axon having no Schwann cells is being modeled.

The following MLAB do-file, called HHF.DO, can be used to establish the Hodgkin-Huxley equations
by typing DO HHF.

"file: HHF.DO";

EL=-50; ENA=55; EK=-72;

GKBAR=36; GNABAR=120; GL=.3179676;

FUNCTION PHI(TEMP)=3^((TEMP-6.3)/10);

FUNCTION F(X)=IF ABS(X)<.00002 THEN 1 ELSE X/(EXP(X)-1);

FUNCTION BM(E)=4*EXP((-E-60)/18);

FUNCTION BH(E)=1/(1+EXP(-3-.1*E));

FUNCTION BN(E)=EXP((-E-60)/80)/8;

FUNCTION AM(E)=F((-35-E)/10);

FUNCTION AH(E)=.07*EXP((-E-60)/20);

FUNCTION AN(E)=.1*F((-50-E)/10);

FUNCTION MINF(E)=AM(E)/(AM+BM(E));

FUNCTION HINF(E)=AH(E)/(AH+BH(E));

FUNCTION NINF(E)=AN(E)/(AN+BN(E));

K=25; S=.2;

FUNCTION IA(T)=I0+(I1-I0)*(IF T<S THEN 1-EXP(-K*T) ELSE \

(1-EXP(-K*S))*EXP(-K*(T-S)));

FUNCTION IONIC(E,M,H,N)=GNABAR*M^3*H*(E-ENA)+GKBAR*N^4*(E-EK)+GL*(E-EL);

FUNCTION EM’T(T)=IA(T)-IONIC(EM,M,H,N);

FUNCTION M’T(T)=PHITEMP*(AM(EM)*(1-M)-BM(EM)*M);

FUNCTION H’T(T)=PHITEMP*(AH(EM)*(1-H)-BH(EM)*H);

FUNCTION N’T(T)=PHITEMP*(AN(EM)*(1-N)-BN(EM)*N);

FUNCTION ISS(E)=IONIC(E,MINF(E),HINF(E),NINF(E));

FUNCTION ESS(I)=ROOT(E,-246,830,ISS(E)-I);

"FOR -62<I<32751, ESS(I) LIES BETWEEN -246 AND 830";

TEMP=6.3; PHITEMP=PHI(TEMP);

V0=-60; I0=0; ESS0=ESS(I0);
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VI=0; I1=0;

INITIAL EM(0)=ESS0+VI;

INITIAL M(0)=MINF(ESS0);

INITIAL H(0)=HINF(ESS0);

INITIAL N(0)=NINF(ESS0);

The following MLAB do-file, called HHDO.DO, can be used to allow the user to establish any desired
boundary conditions and then solve the Hodgkin-Huxley equations established with HHF.DO given
above.

"file: HHDO.DO";

I0=0;

TYPE "

IF AN INITIAL VOLTAGE CLAMP OF X mV (-245<X<-12) IS \

DESIRED, TYPE: V0=X.

OTHERWISE SET ANY DESIRED PRECONDITIONING uA CURRENT,Y, \

(-62<Y<1100) BY TYPING: I0=Y.

OTHERWISE TYPE A RETURN (V0 WILL BE -60 AND I0 WILL BE 0).";

DO KLINE;

IF V0 NOT=-60 THEN (I0=ISS(V0));

ESS0=ESS(I0);

VI=0;

TYPE "

ENTER INITIAL IMPULSE POTENTIAL CHANGE,X, BY TYPING: VI=X.

OTHERWISE TYPE A RETURN (VI WILL BE 0).";

DO KLINE;

I1=0;

TYPE "

DEFINE AN APPLIED CURRENT FUNCTION,IA, BY TYPING: \

FUNCTION IA(T)=desired expression. \

OTHERWISE, IF DESIRED, MERELY SET AN INITIAL .2 MSEC \

DURATION STEP CURRENT, s, (IN uA) BY TYPING: I1=s.\

OTHERWISE TYPE A RETURN (I1 WILL BE 0).";

DO KLINE;

TV=0:12:.1;

TYPE "

SET the TIME-VECTOR, TV, BY TYPING: TV=0:ft:dt (TV=0:12:.1 BY DEFAULT).";

DO KLINE;

METHOD = GEAR;

Q=INTEGRATE(EM’T,M’T,H’T,N’T,TV);
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TYPE "

Q COL 1=TV, COL 2=EM, COL 3=EM’, COL 4=M, COL 5=M’, \

COL 6=H, COL 7=H’, COL 8=N, COL 9=N’.";

For example, we can compute the famous “action potential” curve as follows.

*DO HHF

*DO HHDO

IF AN INITIAL VOLTAGE CLAMP OF X mV (-245<X<-12) IS DESIRED, TYPE: V0

= X. OTHERWISE SET ANY DESIRED PRECONDITIONING uA CURRENT,Y,

(-62<Y<1100) BY TYPING: I0 = Y. OTHERWISE TYPE A RETURN (V0 WILL BE

-60 AND I0 WILL BE 0).

*

ENTER INITIAL IMPULSE POTENTIAL CHANGE,X, BY TYPING: VI=X. OTHERWISE

TYPE A RETURN (VI WILL BE 0).

*

DEFINE AN APPLIED CURRENT FUNCTION,IA, BY TYPING: FUNCTION

IA(T)=desired expression. OTHERWISE, IF DESIRED, MERELY SET AN INITIAL

.2 SECOND DURATION STEP CURRENT,s, (IN uA) BY TYPING: I1 =

s. OTHERWISE TYPE A RETURN (I1 WILL BE 0).

*I1 = 50

SET the TIME-VECTOR, TV, BY TYPING: TV = 0:ft:dt (TV=0:12:.1 BY DEFAULT).

*

Q COL 1=TV,COL 2=EM,COL 3=EM’,COL 4=M,COL 5=M’,COL 6=H,COL 7=H’,COL 8=N,COL 9=N’

*DRAW Q COL 1:2

*VIEW

The resulting picture with added titles is reproduced below.
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Many familiar observations can be simulated and the model’s response can be investigated by
solving the Hodgkin-Huxley equations with various initial conditions. See “Computer analyses of
the excitable membrane” by T. Hironaka and S. Morimoto in Computers and Biomedical Research,
Vol. 13, pp. 36:51, 1980, for a number of interesting numerical experiments which can be performed.

One problem with the Hodgkin-Huxley model is that current can flow in each loop of the circuit
analog, but this implies sodium and potassium change into each other! This defect is not serious
since the “impossible currents” are small, but it is a conceptual error.

One of the main agreements of the Hodgkin-Huxley model with experiment is the suitability of the
function Em(t) as a solution to the cable equation which involves the velocity of an action potential
wave propagating along an axon.

Consider an infinitely-long sheathed cable of diameter δ cm with ri Ω resistance for 1 cm. Let the
exterior medium have a resistance of ro Ω for a 1 cm distance along the cable. Let Ie(x, t) be the
current in µA applied to the surface of the short band of cable centered at the point at distance
x along the cable and at time t with an electrode with a feedback voltage control which develops
whatever voltage is required to obtain the specified current. The circuit is from ground through
the electrode, then through the cable sheathing and, via leakage, back to ground. Let I(x, t) be
the current in µA flowing across the short band of cable sheathing centered at position x, at time
t. I(x, t) arises due to capacitance-driven current, leakage, and, for an axon, active forces in the
membrane sheathing itself. Finally let V (x, t) be the voltage across the sheathing (inside potential
minus outside potential) at position x and time t.

The cable equation relates these functions as:

∂2V/∂x2 = (ri + ro)πδI − r0Ie.

For a constant sheathing resistance of Rm Ω per cm2, we have

I = c((∂V/∂t) + V/Rm/(πδ2/4).
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If our cable is a giant squid axon, however, the membrane resistance varies, and we may define I
by the Hodgkin-Huxley equations as

I(x, t) = c(∂V/∂t) + gK(V − EK) + gNa(V − ENa) + gL(V − EL).

Thus, we have

∂2V/∂x2 = (ri + ro)πδ[c(∂V/∂t) + gK(V − EK) + gNa(V − ENa) + gL(V − EL)]− r0Ie,

with V (x, 0) = −60 mV for −∞ ≤ x ≤ ∞. All the state variables m, h, and n are now functions
of x and t, and assumed to be at their normal resting values for all x at time 0. Ie is a perturbing
current which will cause potential changes which will propagate along the axon according to the
cable equation above.

Another way to begin is to assume that Ie = 0, but that V (x, 0) is known as an initial condition,
where the axon can be assumed to have been charged by a current pulse function which established
V (x, 0) sufficiently rapidly that m, h, and n have not responded. For example, we may have
V (x, 0) = V0 exp(−x2/s2) for some spatial decay constants. We have the additional constraint that
V (x, t) → −60µV as t → ∞, which will be necessarily satisfied.

The nature of the solution surface V for the initial condition V (x, 0) = V0 exp(−x2/s2) where V0

is above threshold, is that the curve V (0, t) is an action potential-like curve which is propagated
along the axon (we ignore propagation towards x = −∞) so that approximately the same curve
appears as V (x1, t+ x1/θ).

The parameter θ is the propagation velocity. The initial part of the curve V (0, t) is artificially
established by the initial condition and gradually dies out as time progresses, thus we do not have
a pure traveling wave. The curve V (x1, t) for a large value of x1 is almost the same shape as
V (x1 + ε, t+ (x1 + ε)/θ) however.

If we ignore the transient behavior and assume that t is translated so that V (0, t) is propagated
at velocity θ cm/sec in a nearly unchanged form, then we may take V (x, t) = V (x − θt, 0) =
V (0, t− x/θ). Let s = t− x/θ, and let U(s) = V (x, t) = V (0, t− x/q) = V (0, s). Then ∂2V/∂x2 =
(d2U/ds2)/θ2 and ∂V/∂t = dU/ds, and we have:

d2U/ds2 = θ2(ri + ro)πδ[c(dU/ds) + gK(U − Ek) + gNa(U − ENa) + gL(U − EL)].

For U(0) = −60µV and dU(0)/ds = 0, the solution is 0 but since V (x, t) 6= −60mV, even for t = 0
and very large x, when the surface V (x, t) is not flat at −60mV, the appropriate initial conditions
for the steady-state wave U is U(0) = U0 and dU(0)/ds = w0 where U0 and w0 are very small. m(0),
h(0), and n(0) may revert to nearly the resting state values. To obtain a physically meaningful
solution, the initial values U0 and w0 must be nearly correct. Also an acceptable solution must
have U(s) → −60mV as s → ±∞. This only occurs for certain discrete values of θ. The parameter
θ is thus analogous to an eigenvalue of a linear operator.

It has been shown that, when U0, w0, and θ are carefully chosen, then U(s) approximates the
almost steady-state traveling wave observed in a real axon, and moreover that θ is approximately



14

the propagation velocity of about 168000/(πδc(ri+ro)) cm/sec which is actually observed. This fact
constitutes one of the coroborations of the Hodgkin-Huxley model for the squid axon membrane.

Since θ cannot be precisely represented, the numerically computed solution U(s) will not approach
−60mV as s → ±∞, but rather will approach +∞ or −∞, depending upon the error in θ (and U0

and w0).


