Submitted by Civilized Software Inc.

Step-Wise Multiple-Site Binding

Authors: Gary Knott, Zhiping You, Civilized Software Inc.

Cooperative effects often arise when there are multiple binding sites for a ligand that are located spatially close to one another. Some of the issues that arise are discussed in "Mixed and uniform cooperativity of ligand binding to multisite proteins: The cooperativity types allowed by the Adair equation and conditions for them" by Edward P. Whitehead, in the Journal of Theoretical Biology, pp. 153:170, vol. 87, 1980.

A particular situation of interest is that where many F molecules bind step-wise through a series of reactions to a G molecule with distinct affinities. For example, oxygen binds to hemaglobin in this manner. This is one explanation for apparent cooperative binding. Let G_0 denote free G. Thus we may consider the situation:

$$F + G_0 \frac{A_1}{\overline{D_1}} G_1, F + G_1 \frac{A_2}{\overline{D_2}} G_2, \dots, F + G_{N-1} \frac{A_N}{\overline{D_N}} G_N.$$

When N (the number of F-binding sites on each G molecule) is not large, the kinetic model differential equations can be used in curve-fitting; however, in general, we deal with the equilibrium model instead.

Define the molar equilibrium constants $K_i = A_i/D_i$. Let F(t) be the concentration of (unbound) F at time t, let $G_i(t)$ be the concentration of G_i at time t, and let F_e and G_{ie} be these concentrations at $t = t_e$, the time when our system approaches equilibrium. Then: $K_i = G_{ie}/(G_{i-1,e}F_e)$, so $K_1K_2...K_i = G_{ie}/(G_{0e}F_e^i)$. Now we may define $B_i = K_1K_2...K_i$.

Now, let F_b be the concentration of bound F molecules at equilibrium, so $F_b = G_{1e} + 2G_{2e} + \ldots + NG_{Ne}$. Note that $F_b + F_e$ is the total concentration of F present, i.e. $F_b + F_e = F(0)$. Also, let H be the concentration of G molecules in either a bound or free state, so $H = G_{0e} + G_{1e} + \ldots + G_{Ne}$.

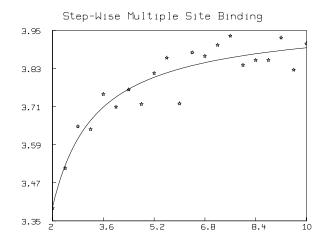
Now, define v as the mean number of F molecules bound to each G molecule. Then $v = F_b/H$, or $v = (G_{1e} + 2G_{2e} + \ldots + NG_{Ne})/(G_{0e} + G_{1e} + \ldots + G_{Ne})$. But, $G_{ie} = B_iG_{0e}F_e^i$, so $v = (B_1G_{0e}F_e + 2B_2G_{0e}F_e^2 + \ldots + NB_NG_{0e}F_e^N)/(G_{0e} + B_1G_{0e}F_e + B_2G_{0e}F_e^2 + \ldots + B_NG_{0e}F_e^N)$, or $v = (B_1F_e + 2B_2F_e^2 + \ldots + NB_NF_e^N)/(1 + B_1F_e + B_2F_e^2 + \ldots + B_NF_e^N)$.

This is the Adair-Klotz stepwise equilibrium model.

Now given data points (F_e, F_b) , each based on different initial values of H and $F_e + F_b$, corresponding data points of the form $(F_e, F_b/H)$ can be constructed, and v

thus allowing the parameters B_1, B_2, \ldots, B_N to be estimated (which hence provides estimates of the equilibrium constants K_1, K_2, \ldots, K_N). If the number of sites, N, is not known, N can be set to 1, 2, 3, etc., and that value of N which yields the best fit can be taken as the estimate of the true N-value. Note the model for data points of the form (F_e, G_{0e}) can be expressed in terms of a ROOT expression in $G_0(0)$ and K_1, \ldots, K_N . Note also that data of the form $(F_e, F_b/H)$ has error in both the first and second components. This means that, at a minimum, correct weights should be used in fitting.

The following is a MLAB dialog that demonstrates the above mentioned curve fitting for N=4. We first define the model function $v(F_e)$, read-in the data, set the initial guesses for B_1, B_2, B_3 and B_4 , and then fit the data to the model.


```
fct p(x) = 1+sum(I,1,4, B[I]*x^I)
fct v(fe) = fe*p'x(fe)/p(fe) /* model function */
data = read(msb, 21, 2)
t = minv((data col 1)):maxv(data col 1)!100
B = 2:5 /* initial guesses */
```

fit(B), v to data with weight ewt(data)

final parameter values

```
value
              error
                          dependency parameter
 2.7807664
            164.6641428
                          0.9999816
                                      B[1]
 0.0702266
             16.0436904
                                      B[2]
                          0.9992536
            133.7340925
 3.1455369
                          0.9999952
                                      B[3]
 2.7828358
            116.4894630
                          0.9999972
                                      B[4]
3 iterations
best weighted sum of squares = 3.047449e+01
weighted root mean square error = 1.338886e+00
weighted deviation fraction = 9.451356e-03
R squared = 8.959082e-01
```

draw data lt none pt star ptsize 0.01
draw points(v,t)
top title "Step-Wise Multiple Site Binding"
view

¹Authors' address: Civilized Software Inc., 12109 Heritage Park Circle, Silver Spring, MD 20906. Phone: (301)962-3711. Email: csi@civilized.com, WWW: http://www.civilized.com