
Gaussian Elimination and LU-Decomposition

Gary D. Knott

Civilized Software Inc.

12109 Heritage Park Circle

Silver Spring MD 20906

phone:301-962-3711

email:knott@civilized.com

URL:www.civilized.com

January 9, 2014

1 Gaussian Elimination and LU-Decomposition

Solving a set of linear equations arises in many contexts in applied mathematics. At least until
recently, a claim could be made that solving sets of linear equations (generally as a component of
dealing with larger problems like partial-differential-equation solving, or optimization, consumes
more computer time than any other computational procedure. (Distant competitors would be the
Gram-Schmidt process and the fast Fourier transform computation, and the Gram-Schmidt process
is a first cousin to the Gaussian elimination computation since both may be used to solve systems
of linear equations, and they are both based on forming particular linear combinations of a given
sequence of vectors.) Indeed, the invention of the electronic digital computer was largely motivated
by the desire to find a labor-saving means to solve systems of linear equations [Smi10].

Often the subject of linear algebra is approached by starting with the topic of solving sets of linear
equations, and Gaussian elimination methodology is elaborated to introduce matrix inverses, rank,
nullspaces, etc.

We have seen above that computing a preimage vector x ∈ Rn of a vector v ∈ Rk with respect to
the n× k matrix A consists of finding a solution (x1, . . . , xn) to the k linear equations:

A11x1 + A21x2 + · · ·+ An1xn = v1

A12x1 + A22x2 + · · ·+ An2xn = v2

...

A1kx1 + A2kx2 + · · ·+ Ankxn = vk.

This corresponds to xA = v.

1

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 2

If v ∈ Rk − rowspace(A) then there are no solutions x; the equations xA = v are inconsistent. For
example, [1x1 + 2x2 = 0, 2x1 + 4x2 = 1]. This is because xA = x1(A row 1) + · · ·+ xn(A row n) ∈
rowspace(A) ⊆ Rk for every x ∈ Rn.

Recall that nullspace(A) = {x ∈ Rn | xA = 0} with dim(nullspace(A)) = n − rank(A). If
nullspace(A) = {0} and v ∈ rowspace(A), then the linear equations xA = v have the unique
solution x = vA+, where the k × n matrix A+ is the Moore-Penrose pseudo-inverse matrix of A.
Necessarily k ≥ n; in case n = k, A is non-singular and A+ = A−1 so x = vA−1. The vector vA+

always belongs to colspace(A) regardless of the choice of v or the dimension of nullspace(A).

More generally, if dim(nullspace(A)) ≥ 0 and v ∈ rowspace(A), there is a dim(nullspace(A))-
dimensional flat of solutions x. The vectors in nullspace(A) + vA+ ⊆ Rn comprise all the solution
vectors, x, that satisfy xA = v. The matrix A corresponds to a mapping that maps the family of
parallel (n−rank(A))-dimensional flats {nullspace(A)+y | y ∈ colspace(A)} covering Rn to points
in rowspace(A) ⊆ Rk; this flat-to-point mapping is one-to-one and onto.

Geometrically, with rank(A) = r and v ∈ rowspace(A), we have r linearly-independent hyperplanes
defined by (x, A col j1) = vj1 , . . ., (x, A col jr) = vjr where A col j1, . . . , A col jr are linearly-
independent columns of A; these hyperplanes intersect in an (n − r)-dimensional flat in Rn; this
flat is the translation of nullspace(A): vA+ + nullspace(A).

In general, the matrix A+A is the k × k projection matrix onto rowspace(A) ⊆ Rk, and for any
vector v ∈ Rk, the vector vA+ is the unique vector in colspace(A) such that |v−vA+A| is minimal;
moreover vA+ is a shortest minimizing vector in Rn.

We often wish to determine which of these cases (no solution, unique solution, multiple solutions)
hold for a given n×k matrix A and a given righthand-side vector v ∈ Rk, and when v ∈ rowspace(A),
we wish to compute a solution vector x = vA+ without the expense of computing the Moore-Penrose
pseudo-inverse matrix A+. The classic step-wise approach to computing x is to add a multiple of
one equation to another at each step until the system of equations is reduced to a form which is easy
to either solve or to see that no solution or no unique solution exists. This process is called Gaussian
elimination, since we generally aim to eliminate successive variables from successive equations by
simple algebraic modifications as was proceduralized by C. F. Gauss [Grc11a].

The form that is most commonly sought is a triangular system of equations. We will usually only
need to deal with such a triangular system in the case where n = k and we have a unique solution
vector x, i.e., where we have a consistent system of equations with n = k, and the matrix of
coefficients is non-singular. In this case, we can obtain:

L11x1 + L21x2 + · · · + Ln−1,1xn−1 + Ln1xn = y1

L22x2 + · · · + Ln−1,2xn−1 + Ln2xn = y2
...

Ln−1,n−1xn−1 + Ln,n−1xn = yn−1

Lnnxn = yn

This corresponds to xL = y where L is an n× n lower-triangular matrix. Let us assume there is a
unique solution, so L must be non-singular, and thus Lii is necessarily non-zero for i = 1, . . . , n. If

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 3

we have such a triangular form, then we have one equation involving just xn, one involving just xn

and xn−1, and so on, and it is easy to compute the solution vector x. The process of computing the
solution is called “back-substitution.” An algorithm for solving xL = y with back-substitution is
given below. Note if we try to divide by zero, this algorithm will fail; this is why we require Lii 6= 0
for 1 ≤ i ≤ n.

[for i = n, n− 1, . . . , 1 : (xi ← yi; for j = i + 1, . . . , n : (xi ← xi − Ljixj); xi ← xi/Lii)].

Exercise 1.1: State the back-substitution algorithm that applies when we have a non-singular
n× n upper-triangular matrix U with xU = y, so that we have one equation involving just x1,
one involving just x1 and x2, and so on.

Exercise 1.2: Write-out the matrix products xL and LTxT and compare them.

Exercise 1.3: Let A be a 1× k matrix. What is the lower-triangle of A?

Exercise 1.4: Let L be an n × n lower-triangular matrix. Why must Lii 6= 0 for 1 ≤ i ≤ n
when L is non-singular?

Exercise 1.5: Show that the back-substitution algorithm given above uses n divisions, n(n−
1)/2 multiplications and subtractions, and n(n + 3)/2 assignment operations to compute the
vector x.

Exercise 1.6: When is the inverse of a non-singular n × n triangular matrix, L, itself trian-
gular? Hint: consider determining the i-th row of L−1 by solving xL = ei.

Exercise 1.7: Show that if the i-th column of an n× n matrix L has Lji = 0 then (L col i)T

is normal to the natural basis vector ej . Thus when L is a lower-triangular matrix, (L col i)T

is normal to e1, e2, . . . , ei−1 for i = 2, . . . , n.

For the n × k matrix A with A 6= 0, we can approach solving the system of k equations with n
unknowns xA = v as follows. For each variable xi with i = 1, 2, . . . , n, select an “eligible” equation
(x, A col j) = vj with Aij 6= 0; this equation is called the pivot equation and the coefficient Aij

is called the pivot value for the elimination of xi. Solve this equation for xi, and then use this
expression for xi to eliminate xi in all the other equations.

Specifically, given xi =
∑

1≤h≤n
h 6=i

−Ahj

Aij
xh, we eliminate xi from the equation (x, A col p) = vp by

substituting
∑

1≤h≤n
h 6=i

−Ahj

Aij
xh for xi in (x, A col p) = vp to obtain the equation

(x, [A col p]− Aip

Aij
[A col j]) = vp −

Aip

Aij
vj ,

in which the variable xi has been eliminated, (i.e., the coefficent of xi is zero.) Note this trans-
formation replaces equation p with the sum of equation p and a multiple of equation j. (This
transformation applied to all equations p with p 6= j is called a full-elimination or full-pivoting

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 4

iteration.) We then make equation j “ineligible” and proceed to try to eliminate the next variable,
xi+1 from all but one of our equations (both eligible and ineligible,) continuing in this way until
there are no eligible equations left or no variables appearing in multiple equations left to eliminate.
Note if Aip = 0, xi is “already eliminated” in equation p and we need not proceed further to
eliminate xi in equation p.

If we can succeed in eliminating each variable from all but one of our equations, and if each final
equation thus obtained contains no more than one variable, distinct from the variables in all the
other equations, then we have “diagonalized” our system of equations; each equation is now either
of the form “0 = v′j” or is of the form “A′

ijxi = v′j ,” with A′
ij 6= 0. If we have any equation of the

form “0 = v′j” with v′j 6= 0, then our equations are inconsistent. Otherwise, we can easily obtain
values of x1, . . . , xn that satisfy xA = v. (We have xi = v′j/A

′
ij when A′

ij 6= 0, and we may take xi

to be an arbitrary value when A′
ij = 0, i.e., when the “ equation for xi” is 0 = 0.)

Exercise 1.8: Is the qualifying clause “distinct from the variables in all the other equations”
in the prior paragraph superfluous? Hint: yes.

This method of eliminating variables by forming linear combinations of the originally-given equa-
tions, as well as variant methods which do not achieve a full “diagonalized” system of equations,
are all called Gaussian elimination.

If we have more equations than unknowns (n < k,) then either these k equations are inconsistent,
or at least k − n of these equations are linear combinations of the other equations. If exactly n of
the k consistent equations are linearly-independent, there is a unique solution; otherwise we have
fewer than n independent equations and we have an infinite number of solutions. If we have at
least as many unknowns as equations (n ≥ k,) then, unless these equations are inconsistent, there is
always at least one solution, and when n > k there are an infinite number of solutions. (There may
also be an infinite number of solutions when n = k and there are fewer than n linearly-independent
equations.)

Exercise 1.9: What do we mean by an “eligible” equation? Why do we make an equation
“ineligible” after we use it to eliminate a variable from all the other equations? (Try using
the same equation in two steps to eliminate two distinct variables x1 and x2 from all the other
equations in an example such as [x1 + x2 + x3 = 3, x1 − x2 − x3 = 1, x1 + x2 − x3 = 2].)

Alternately, we can try to “reduce” our system of equations xA = v to triangular form rather
than diagonal form by “partially” eliminating each variable from our equations, i.e., variable xi

is eliminated from k − i equations when possible. This triangular form can be as useful as the
diagonal form, and even more so when xA = v does not have a unique solution, and it can also
be used to solve multiple systems of equations with distinct righthand-sides, with just two back-
substitution steps for each such system. This is achieved by using Gaussian elimination as sketched
above, but only eliminating the i-th variable xi from the k − i currently-“eligible” equations, not
including the current pivot equation. This transformation is called tail-elimination. (What we
mean by ‘triangular’ is that one equation contains only 1 variable, one equation contains at most
2 variables, and so on. Note, in general, neither “true” diagonal or triangular forms of coefficient
matrix can be obtained unless we renumber, i.e., permute our variables and/or suitably order our
equations.)

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 5

It is important to note that, depending on the order of our equations and the numbering of our
variables, constructing either a triangular or diagonal form may encounter very small pivot values
and this may introduce excessive round-off error in the solution of the associated set of linear
equations; we may use a “pivot search” for a large pivot value during each iteration to mitigate this
danger. (Large pivot values are less problematic with respect to error.) The “partial” elimination
process to obtain a triangular form using round-off error-reduction measures is the subject to be
addressed below.

In matrix form, adding a multiple of one equation to another in the system of equations xA = v
consists of adding a multiple of one column of the n×k matrix A to another, and at the same time
adding that multiple of the same (single element) column of v to the other corresponding (single
element) column of v. (We manipulate columns rather than rows because we take vectors to be
rows rather than columns and we apply matrices to vectors by multiplying on the right.) This can
be nicely organized, when desired, by appending v to the matrix A as an additional row.

As an example, consider the equations

[1] 0 · x1 + 1 · x2 + 2 · x3 = 2
[2] −1 · x1 + 0 · x2 + 1 · x3 = −1
[3] 1 · x1 + 1 · x2 + 0 · x3 = 0
[4] 0 · x1 + 2 · x2 + 3 · x3 = 1

.

In matrix form these equations are xA = v where x = (x1, x2, x3), A =





0 −1 1 0
1 0 1 2
2 1 0 3



 and

v = (2,−1, 0, 1).

If we select the first pivot equation for x1 to be equation 2 with the pivot value −1, (i.e., the
coefficient of x1 in equation 2,) then eliminating x1 in all the other equations yields:

(x1, x2, x3)





0 −1 0 0
1 0 1 2
2 1 1 3



 = (2,−1,−1, 1).

Now selecting the second pivot equation for x2 to be equation 1 with the pivot value 1, eliminating
x2 in the remaining eligible equations (equations 3 and 4,) yields:

(x1, x2, x3)





0 −1 0 0
1 0 0 0
2 1 −1 −1



 = (2,−1,−3,−3).

Now we may select equation 3 to be our third pivot equation with the pivot element -1 corresponding
to the variable x3, and we may eliminate x3 from the only remaining eligible equation (equation
4,) to obtain:

(x1, x2, x3)





0 −1 0 0
1 0 0 0
2 1 −1 0



 = (2,−1,−3, 0).

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 6

Now we may reorder our equations to obtain the triangular form:

(x1, x2, x3)





−1 0 0 0
0 1 0 0
1 2 −1 0



 = (−1, 2,−3, 0).

And a back-substitution computation shows that x3 = 3, and then x2 = 2− 2 · x3 = −4, and then
x1 = 1− 0 · x2 + 1 · x3 = 4. Note that if our original equation 4 had been 0 · x1 + 2 · x2 + 3 · x3 = 2,
our reduced equation 4 would have been 0 · x1 + 0 · x2 + 0 · x3 = 1, and our system of equations
would have been inconsistent.

Also note that, rather than reorder our equations, (i.e., permuting the columns of our reduced
matrix of coefficients,) we could have re-labeled our variables: writing x1 for x2 and x2 for x1, (and
leaving x3 alone,) and permute the rows of our coefficient matrix accordingly to obtain

(x1, x2, x3)





1 0 0 0
0 −1 0 0
2 1 −1 0



 = (2,−1,−3, 0).

And in this case, we must remember that x1 is the “original” x2, and x2 is the “original” x1.

Exercise 1.10: Why do we say two back-substitution steps are required to solve each of a
sequence of linear systems with differing righthand-sides? (If you can answer this question, you
have probably seen the LU-decomposition idea before.)

Adding a multiple of one column of a matrix to another column can be effected by multiplying
on the right by a suitable elementary matrix E. This observation is the basis of the identities
underlying the LU-decomposition algorithm which is the central subject of this chapter. Define
Ek[i, j, α] to be the k × k matrix I + αeT

j ei where ej is the k-vector (0, . . . , 0, 1, 0, . . . , 0) with each
component equal to 0 except component j which is 1. Now, for any k-column matrix A, AEk[i, j, α]
is the same matrix as A except that column i is replaced by (A col i) + α(A col j). The matrix
Ek[i, j, α] is called an elementary matrix.

Exercise 1.11: Show that eT
j ei is the k×k matrix each of whose elements is 0 except component

[j, i] which is 1. Note rank(eT
j ei) = 1.

Exercise 1.12: Show that Ek[i, j, α]T = Ek[j, i, α]. Thus the transpose of an elementary
matrix is an elementary matrix.

Exercise 1.13: Show that the k × k matrix Ek[i, j, α] is lower-triangular when i ≤ j and is
upper-triangular when i ≥ j.

Exercise 1.14: A suitable comformable elementary matrix can also be used to add a multiple
of a row of an n × k matrix A to another row of A. Show that En[i, j, α]A is the same matrix
as A except that row j is replaced by (A row j) + α(A row i).

Exercise 1.15: Show that Ek[i, i, α − 1] = I except the [i, i] element is α. Show that B =
AEk[i, i, α− 1] has the same columns as A except B col i = α(A col i).

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 7

Exercise 1.16: Show that, if α = 0 or i 6= j then Ek[i, j, α]−1 = Ek[i, j,−α], if α 6= −1 and
i = j then Ek[i, j, α]−1 = Ek[i, i,−α/(1+α)], and if α = −1 and i = j then Ek[i, j, α] is singular.

Exercise 1.17: Let the k × k matrix S = Ek[i, j,−1]Ek[j, i, 1]Ek[i, j,−1]Ek[i, i,−2], where
1 ≤ i ≤ k and 1 ≤ j ≤ k with i 6= j. Show that B = AS has the same columns as A except
B col i = A col j and B col j = A col i, where i 6= j. What does right-multiplication by S do
if i = j?

Recall that transposek(i, j) denotes the permutation 〈1, . . . , j, . . . , i, . . . , k〉 where component t = t,
except component i = j and component j = i. The k × k column-permutation matrix corre-
sponding to transposek(i, j) is the matrix I col transposek(i, j); from the exercise above, this is:
Ek[i, j,−1] Ek[j, i, 1] Ek[i, j,−1] Ek[i, i,−2] when i 6= j. The n × n row-permutation matrix cor-
responding to transposen(i, j) is the matrix I row transposen(i, j); when i 6= j, this is the matrix
(En[i, j,−1] En[j, i, 1] En[i, j,−1] En[i, i,−2])T. When i = j, I col transposek(i, i) = Ek[i, i, 0] and
I row transposen(i, i) = En[i, i, 0].

Note that since any transposition permutation matrix can be expressed as a product of elementary
matrices and every permutation can be expressed as a composition of transpose permutations, any
permutation matrix can be expressed as a product of elementary matrices.

It is convenient to define the k× k matrix Gk[i, w] = I + eT
i w, where w ∈ Rk. The matrix Gk[i, w]

is called a column-operation Gauss matrix. Note eT
i w is the k × k matrix whose j-th row is 0 for

j 6= i and whose i-th row is w. Thus (AGk[i, w]) col j = (A col j) + wj(A col i) for 1 ≤ j ≤ k
where colsize(A) = k.

Exercise 1.18: Show that Gk[i, w] row i = ei + w and Gk[i, w] row j = ej for j 6= i.

Exercise 1.19: Show that eT
i eje

T
i ej+1 = Ok×k.

Exercise 1.20: Show that Gk[i, w] = Ek[1, i, w1]Ek[2, i, w2] · · ·Ek[k, i, wk].

Exercise 1.21: Show that all the matrices Ek[1, i, w1], . . . , Ek[i− 1, i, wi−1], Ek[i + 1, i, wi+1],
. . ., Ek[k, i, wk] commute with one-another, but not necessarily with Ek[i, i, wi].

Exercise 1.22: Show that if wi = 0, then Gk[i, w]−1 = Gk[i,−w] = I − eT
i w.

Exercise 1.23: Let A be a k × m matrix. Show that (Gk[i, w]TA) row j = (A row j) +
wi(A row i). (The transpose of a column-operation Gauss matrix is called a row-operation
Gauss matrix.)

Exercise 1.24: Let A be a k × k matrix with Ari 6= 0.

Let w =

(−Ar1

Ari
, . . . ,

−Ar,i−1

Ari
,
1−Ari

Ari
,
−Ar,i+1

Ari
, . . . ,

−Ark

Ari

)

. What is (AGk[i, w]) row r?

The column-operation Gauss matrix Gk[h, w] can be used to convert the last h−1 components of a k-
vector to 0, when component h of the vector is non-zero. Let a = (a1, a2, . . . , ak) with ah 6= 0. Take
w = (0, . . . , 0, 0,−ah+1/ah,−ah+2/ah, . . . ,−ak/ah). Then aGk[h, w] = (a1, a2, . . . , ah, 0, . . . , 0).
This is the essential computation in tail-elimination. We use only this form of Gauss matrix below;
thus, without overriding qualification, we shall henceforth consider only restricted Gauss matrices
Gk[h, w] where w col (1 : h) = 0.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 8

Exercise 1.25: Show that the restricted Gauss matrix Gk[h, w] with w col 1 : h = 0 is a k×k
upper-triangular matrix.

Exercise 1.26: Take s ∈ {1, . . . , k} and let v1, . . . , vs be vectors in Rk such that (vh) col (1 :
h) = 0 for h = 1, . . . , s. Let Mh = Gk[h, vh] be the indicated restricted Gauss matrix. Show
that M1M2 · · ·Ms = I +

∑

1≤i≤s eT
i vi and also show that (M1M2 · · ·Ms)

−1 = I −∑1≤i≤s eT
i vi.

Hint: show that (eT
i vi)(e

T
j vj) = 0 when i > j (and (vi) col (1 : i) = 0).

Given an n × k matrix A, we can (1) scale any desired column of A, (2) add a multiple of one
column to another column, or (3) swap any two specified columns by multiplying A on the right by
one or more suitable k × k elementary matrices. Moreover, adding different multiples of a column
to all the columns of the matrix A can be done by multiplying a suitable column-operation Gauss
matrix on the right of the given matrix A. Similar operations can be done to the rows of A by
multiplying on the left by one or more suitable n× n elementary matrices.

We can transform an n × k matrix A into a lower-triangular form by multiplying by suitable
permutation matrices and restricted Gauss matrices appropriately on the left and on the right of
A. Indeed if we multiply the coefficient matrix A by suitable permutation matrices and unrestricted
Gauss matrices appropriately on the left and on the right, we can transform A into a diagonal form.
This does not mean that every system of linear equations has a solution; the equations may be
inconsistent. Moreover a solution need not be unique; some diagonal elements in the matrix of
the transformed equations may be 0. (Of course, we do not want to use matrix multiplication; we
want to achieve the effect of multiplying by suitable matrices without incurring the cost of actually
doing such multiplications. This is achieved by using Gaussian elimination which “optimizes” the
implied matrix multiplications.)

The reduction of the n × k matrix A to triangular or diagonal form by multiplying by suitable
elementary matrics on the left and/or right of A is equivalent to applying a sequence of the oper-
ations: (1) scaling a row or column by a constant, (2) adding a multiple of a row (or column) to
another row (or column,) and (3) swapping two rows or two columns. We shall see that it is possible
to do all the swapping operations before the other operations. However to do this, a preliminary
computation is required to determine the exchanges that must be done, so doing all the exchanges
before other operations is impractical as well as unnecessary.

Exercise 1.27: Let A be an n×k matrix. Show that there are k×k elementary matrices F1, F2,
. . ., Fm such that G := AF1 · · ·Fm is in column-echelon form where G is in column-echelon form
when: (1) G col i is a covector with i−1+ji initial zero-components with 0 ≤ j1 ≤ j2 ≤ · · · ≤ jk

and i − 1 + ji ≤ n for 1 ≤ i ≤ k. (2) If i − 1 + ji 6= n, Gi−1+ji,i = 1. (3) If Gi−1+ji,i = 1,
Gi−1+ji,t = 0 for 1 ≤ t < i. Hint: decipher what a column-echelon matrix is in simpler terms.

1.1 The Gausssian-Elimination LU-Decomposition Algorithm

Gaussian elimination can be systematized and cast in a more general form by considering an
associated matrix factorization called an LU-decomposition [GV89] [Grc11b]. Again, by multiplying
by suitable permutation matrices and restricted Gauss matrices appropriately on the left and on

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 9

the right of A, we can obtain a complete LU-decomposition of the n × k matrix A. Given such a
decomposition, solving the linear equations xA = v is done with a pair of back-substitution steps.

Let r = rank(A) We will give an algorithm below based on the complete-pivoting algorithm in
[GV89] that determines the rank r, and further determines n×n transposition permutation matrices
R1, . . . , Rr and k × k transposition permutation matrices C1, . . . , Cr and k × k restricted column-
operation Gauss matrices M1, . . . , Mr, and an n× k lower-triangular matrix L and a non-singular
k × k upper-triangular matrix U such that

Rr · · ·R1AC1M1 · · ·CrMr = L and Rr · · ·R1AC1 · · ·Cr = LU.

The identity Rr · · ·R1AC1 · · ·Cr = LU is called an LU-decomposition for A. The matrix L is an

n×k lower-triangular matrix of the form

[

J 0
K 0

]

, where J is an r×r non-singular lower-triangular

matrix and K is an (n−r)×r matrix. The upper-triangular matrix U satisfies diag(U) = (1, . . . , 1).
When r < k, the submatrix U row (r+1) : k col (r+1) : k is the (k−r)×(k−r) identity matrix. Note
when R1 = · · · = Rr = In×n and C1 = · · · = Cr = Ik×k, our LU-decomposition is just A = LU ; this
form can only be obtained for specially-structured matrices A such as symmetric positive-definite
matrices. (Generally, in practice, r will be computed with finite-precision arithmetic and may
thus be computed erroneously so that r will be the “computational rank” of A which is just an
estimate of rank(A), but, for presentation purposes, we assume exact arithmetic unless we indicate
otherwise.)

This algorithm uses a complete pivot search in step 2. Essentially this means we search for a
largest magnitude coefficient among all the terms for un-“eliminated” variables in all the “eligible”
equations; this coefficent determines which variable to partially eliminate next, i.e., the variable
that this coefficent multiplies, and which “eligible” equation to use to effect this partial elimination,
i.e., the equation in which this coefficient is found. We then use this coefficient as our pivot element
for our next elimination.

Using a complete pivot search introduces a large cost, and, apparently, a lot of complexity due to
the need for maintaining the permuation information needed to cope with using pivot values in
arbitrary positions in our coefficient matrix. However, for the most part, this complexity cannot
be avoided for arbitrary coefficient matrices, and using a largest-magnitude admissble coefficient as
our pivot value in each iteration generally reduces the error introduced when fixed finite-precision
arithmetic is used.

LU-Decomposition by Column-Operation Gaussian Elimination with Complete-Pivoting:
input: n× k matrix A, n ≥ 1, k ≥ 1.
output: L, U, b, c, r, R1, . . . , Rr, C1, . . . , Cr, M1, . . . , Mr

1. L← A; U ← Ik×k; b← 〈1, 2, . . . , n〉; c← 〈1, 2, . . . , k〉; h← 1.

2. Determine indices p ∈ {h, . . . , n} and q ∈ {h, . . . , k} such that |Lpq| = maxh≤i≤n
h≤j≤k

|Lij |.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 10

3. a← Lpq; if a = 0 then (r ← h− 1; exit).

4. bh ← p; ch ← q.
[

Let u = transposek(h, q). Define Ch = I col u.
Let u = transposen(h, p). Define Rh = I row u.

]

5. If h 6= q swap L col h and L col q in L;
If h 6= p swap L row h and L row p in L.
{ Now Lhh = a.}

6.

{

Subtract multiples of L col h from L col (h + 1), L col (h + 2), . . . , L col k
to make L row h col [(h + 1) : k] = 0. Also compute U row h col [(h + 1) : k].

}

for j = h + 1, . . . , k :
(z ← Lhj/a; Lhj ← 0; Uhj ← z; for i = h + 1, . . . , n : (Lij ← Lij − zLih)).
[

Let w col (1 : h) = 0 and w col ((h + 1) : k) = −[L row h col ((h + 1) : k)]/Lhh.
Define Mh = Gk[h, w].

]

7. if h = n or h = k then (r ← h; exit);
h← h + 1; go to step 2.

At exit, this algorithm has determined the value r, the permutation matrices C1, . . . , Cr and
R1, . . . , Rr, the restricted column-operation Gauss matrices M1, . . . , Mr, the lower-triangular ma-
trix L, the upper-triangular matrix U , and the vectors b and c specifying permutations in trans-
position vector form; b corresponds to the n × n row-permutation matrix Rr · · ·R1 such that
Rr · · ·R1 = I row perm(b)−1, where perm(b) denotes the permutation corresponding to the trans-
position vector b, and c corresponds to the k × k column-permutation matrix C1 · · ·Cr such that
C1 · · ·Cr = I col perm(c)−1, where perm(c) denotes the permutation corresponding to the trans-
position vector c. Assuming exact arithmetic, the value r = rank(A).

Exercise 1.28: Show that the matrix products Rr · · ·R1 and M1 · · ·Mr and C1 · · ·Cr are all
products of elementary matrices.

Let P = Rr · · ·R1 and let B = C1M1 · · ·CrMr. Let Q = C1 · · ·Cr. If r = 0, take P = I, B = I,
and Q = I. We shall see that B−1Q is the same matrix as the k × k upper-triangular matrix U
computed in the algorithm above.

The matrix P is an n× n row-permutation matrix, B is a k × k non-singular matrix, Q is a k × k
column-permutation matrix, and the matrix U is a k×k non-singular upper-triangular matrix with
Uii = 1 for i = 1, . . . , k. Also, the transposition vector b represents the inverse of the n-permutation
that the row-permutation matrix P represents, and the transposition vector c represents the inverse
of the k-permutation that the column-permutation matrix Q represents.

Step 5 in the algorithm above is equivalent to [L ← LCh; L ← RhL] and step 6 is equivalent to
[L ← LMh]. Note L is initialized to A. Then Rr · · ·R1AC1M1 · · ·CrMr = L, so PAB = L, so
PA = LB−1, so, with B−1Q = U , PAQ = LB−1Q, and thus PAQ = LU .

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 11

The relation PAQ = LU is called an LU-decomposition for A. Given PAQ = LU , we may determine
if the set of linear equations xA = v is consistent, and if so, compute x such that xA = v as follows.

Note A = P−1LUQ−1 = PTLUQT since the inverse of a permutation matrix is its transpose.
Then xA = v implies xPTLUQT = v implies xPTLU = vQ. Let y = xPTL. Then yU = vQ.
Since U is non-singular and upper-triangular, we can compute y with back-substitution. Now recall
y = xPTL. Let z = xPT. Then y = zL.

If n = k and the lower-triangular matrix L is non-singular, we can compute z with back-substitution.

Otherwise, recall L is an n × k lower-triangular matrix with L =

[

J 0
K 0

]

where J is an r × r

non-singular lower-triangular matrix and K is an (n − r) × r matrix. If y col [(r + 1) : k] 6= 0,
our equations are inconsistent and x does not exist, (since y = zL and z[L col (r + 1) : k] = 0.)
Otherwise we may take zr+1 = zr+2 = · · · = zn = 0 and solve for z1, . . . , zr in the triangular system
of linear equations [z col 1 : r]J = [y col 1 : r] via back-substitution. Now z is determined, no
matter what the value of r is.

Finally, we must appropriately permute the components of z = xPT according to the permutation
matrix P to obtain x = zP . (In order to compute zP within z, we may use the following algorithm.
[for i = r, r − 1, . . . , 1: swap zi with zbi

]. Also, in order to compute vQ within v, we may use the
algorithm: [for i = 1, 2, . . . , r: swap vi with vci

].) Here b and c are the transposition vectors
computed in the Gaussian-elimination LU-decomposition algorithm.

Exercise 1.29: Why is the recipe for computing zP different from the recipe for comput-
ing vQ? Hint: P = Rr · · ·R1 and Q = C1 · · ·Cr where Ri = I row transposen(i, bi) and
Cj = I col transposek(j, cj). We have zP = z(I row perm(b)−1) = z(I col perm(b)) and
vQ = v(I col perm(c)−1).

Exercise 1.30: Show that bi ≥ i for i = 1, . . . , n and cj ≥ j for j = 1, . . . , k.

We could construct permutation vectors b and c representing the matrices P and Q, rather than con-
structing transposition vectors as is done in step 4 in the Gaussian-elimination LU-decomposition
algorithm. We would do this by replacing ‘bh ← p’ with ‘Swap bh with bp’ and replacing ‘ch ← q’
with ‘Swap ch with cq’. This defines b and c as products of transpositions, with P = I row b and
Q = I col c. Then PW is computed as W row b, WP is computed as W col b−1, V Q is computed
as V col c, and QV is computed as V row c−1, where W and V are arbitrary conformable matrices.

Exercise 1.31: How do we compute PTW , WPT, V QT, and QTV for conformable matrices
W and V , given that the vectors b and c are permutation vectors that correspond to the row-
permutation matrix P and the column-permutation matrix Q with P = I row b and Q = I col c?
Hint: P−1 = PT and Q−1 = QT.

Exercise 1.32: Show that xPTL = vB, and hence zL = vB where B = QU−1.

Exercise 1.33: What is computed in the Gaussian-elimination LU-decomposition algorithm
when the n× k matrix A = 0? What is computed when k = 1 and A = eT

n? What is the result
of the Gaussian-elimination LU-decomposition algorithm when n ≥ k? What is the result when
n < k?

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 12

Exercise 1.34: What is the LU-decomposition of the n× k rank 0 matrix On×k?

Exercise 1.35: What is computed in the Gaussian-elimination LU-decomposition algorithm
when the n× k matrix A is diag(v1, v2, . . . , vmin(n,k)) where vi ∈ R for i = 1, . . . ,min(n, k)?

Exercise 1.36: If we have the same number of equations as unknowns, do we always have
a solution for our linear equations xA = v? Show that if n = k and rank(A) = k, the linear
equations xA = v are necessarily consistent and have a unique solution.

Exercise 1.37: Explain why U row (r + 1) : k col (r + 1) : k = Ik−r,k−r when r < k.

Exercise 1.38: Given the n×k matrix A, let m = max(n, k) and define the “augmented”m×m
matrix S as Sij = Aij for 1 ≤ i ≤ n and 1 ≤ j ≤ k, and Sij = 0 for n + 1 ≤ i ≤ m or
k +1 ≤ j ≤ m. Explain how we can compute an LU-decomposition of the n×k matrix A, given
an LU-decomposition of S. This is equivalent to only using our LU-decomposition algorithm
for square matrix inputs.

Exercise 1.39: The pivot value a computed in each iteration of the Gaussian-elimination
LU-decomposition algorithm is the value of an element of L, Lpq, called the pivot element of
that iteration. Why do we seek the largest magnitude element of L row (h : n) col (h : k) in
step 2 to serve as the pivot element in iteration h? Would determining any non-zero element of
L row (h : n) col (h : k) suffice?

Solution 1.39: With exact arithmetic there is no need to seek a large pivot value; any non-zero
value will suffice. However, with fixed finite-precision floating-point arithmetic, each arithmetic
operation may introduce error in the result, depending upon the input values. In particular, if
we have two non-zero floating-point values b = 2rf and c = 2sg, where f and g are p-bit binary
fractions with .5 ≤ |f | < 1 and .5 ≤ |g| < 1, and r and s are integers, then, assuming overflow or
underflow does not occur, the floating-point approximation to the product bc is 2r+sfg(1 + ǫu)
where |ǫ| ≤ .5 and u = 21−p; u is called the rounding-unit of our floating-point number system;
u is the least positive value such that 1 + u rounded to a floating-point value with p bits of
precision is greater than 1. (On a 64-bit IEEE floating-point machine, u = 2−52.)

The error introduced in the product is thus 2r+sfgǫu = bcǫu. The larger the magnitude of the
product bc is, the larger the magnitude of the error can be.

Also, if b and c are themselves rounded-off results of floating-point computations of the form
b = 2rf(1+βu) and c = 2sg(1+γu) for some values β and γ, not necessarily less than .5, then the
floating-point form of the product bc is 2r+sfg(1+βu)(1+γu)(1+ǫu) ≈ 2r+sfg(1+(β+γ+ǫ)u),
so the error is approximately 2r+sfg(β + γ + ǫ)u. Thus error is propagated and its magnitude
is magnified as our computation progresses.

The basic computation in Gaussian-elimination LU-decomposition is of the form Lij ← Lij −
(Lhj/a)Lih. When Lhj 6= 0, the smaller the magnitude of the pivot value a is, the larger the
magnitude of the multiplier Lhj/a is, and hence the larger the absolute error in Lhj/a can be.
And when Lih 6= 0, the error in the product (Lhj/a)Lih is a combination of the error in Lhj/a
and Lih, magnified by their opposite factors, and this error propagates, increasing superlinearly
in each iteration. This is why we want to avoid using small pivot values!

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 13

There is also a more subtle source of error that occurs in computing the difference Lij −
(Lhj/a)Lih (which is also slightly alleviated by avoiding small pivot values.)

Think about the round-off error in computing a difference of the form α− γβ

a
with fixed finite-

precision arithmetic where a is a pivot value and α, β, and γ are random values. If
γβ

a
,

computed with fixed finite-precision arithmetic, is about the same size as α and has the same

sign, the difference will then suffer a large loss in precision, in which the error present in
γβ

a
is

magnified. By “loss of precision” we mean that α−(α− γβ

a
) computed with fixed finite-precision

floating-point arithmetic is very different from
γβ

a
.

Essentially, if
γβ

a
is represented by

γβ

a
(1+ǫu), then our computation results in

[

α− γβ

a
(1 + ǫu)

]

(1+ δu) ≈ α− γβ

a
− γβ

a
ǫu+

(

α− γβ

a

)

δu where |δ| ≤ .5, and if α− γβ

a
is small, the magnitude

of the absolute error |γβ

a
ǫ−

(

α− γβ

a

)

δ|u can be comparatively large. When α− γβ

a
is small,

the absolute error is approximately |γβ

a
ǫ|u, and the relative error |γβ

a
ǫ|u/|

(

α− γβ

a

)

| in our

result can be large. Thus we see that it is computing sums of values of similar magnitudes and
opposite signs that risk causing subsequent catastophic loss-of-precision error. Loss-of-precision
error is essentially relative error, in contrast to the absolute error discussed before.

Choosing a to be larger than an “average” value means that, more often than not,
γβ

a
is smaller

than average and the difference α − γβ

a
has less loss of precision than would be expected on

average. See [Knu97] for a discussion of floating-point arithmetic and round-off error.

Exercise 1.40: Show that Rt = I row transposen(t, bt) and Ct = I col transposek(t, ct) where
b and c are the transposition vectors computed in the Gaussian-elimination LU-decomposition
algorithm. Also show that Ct = CT

t = C−1
t and Rt = RT

t = R−1
t .

Exercise 1.41: Let p = perm(b) and let q = perm(c). Show that the transposition vectors b
and c computed in the algorithm above determine the row-permutation matrix P = Rr · · ·R1

such that P = I row p−1 and determine the column-permutation matrix Q = C1 · · ·Cr such
that Q = I col q−1 respectively. Thus the matrices P and Q need not be explicitly computed.

Solution 1.41:

We have P = RrRr−1 · · ·R1 = (I row transposen(r, br)) · · · (I row transposen(1, b1)) =
I row (transposen(r, br) · · · transposen(1, b1)) = I row p−1 where the permutation p corre-
sponds to the transposition vector b = [b1, b2, . . . , bn] with p = transposen(1, b1) · · · transposen(r, br)
= transposen(r, br) ↓ · · · ↓ transposen(1, b1). (Recall u ↓ v = uv = 〈uv1

, uv2
, . . . , uvn〉.)

Thus the matrix P is the n × n row-permutation matrix I row p−1 where the n-permutation

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 14

p is determined by the transposition vector b via the algorithm: [p ← 〈1, 2, . . . , n〉: for i =
r, r− 1, . . . , 1: swap pi with pbi

] and the n-permutation p−1 is then computed via the algorithm:
[for i = 1, 2, . . . , n: p−1

pi
← i].

We have Q = C1C2 · · ·Cr = (I col transposek(1, c1)) (I col transposek(1, c2)) · · ·
(I col transposek(r, cr)) = I col (transposek(r, cr) · · · transposek(1, c1)) = I col q−1 where the
permutation q corresponds to the transposition vector c = [c1, c2, . . . , cn] with q = transposek(1, c1)
· · · transposek(r, cr) = transposek(r, cr) ↓ · · · ↓ transposek(1, c1).

Thus the matrix Q is the k × k column-permutation matrix I col q−1 where the k-permutation
q is determined by the transposition vector c via the algorithm: [q ← 〈1, 2, . . . , k〉: for i =
r, r− 1, . . . , 1: swap qi with qci

] and the k-permutation q−1 is then computed via the algorithm:
[for i = 1, 2, . . . , k: q−1

qi
← i].

Exercise 1.42: Let p be an n-permutation and let q be a k-permutation. Show that
z(I row p−1) = z col p and v(I col q−1) = v col q−1.

Exercise 1.43: Show that Jii 6= 0 for 1 ≤ i ≤ r and show that L is non-singular if and only
if n = k = r and L = J .

Exercise 1.44: Show that if n = k then det(A) = L11 · L22 · · ·Lnn · det(P) · det(Q). Note,
det(P)·det(Q) is either 1 or −1. If we keep track of the number, tp, of non-identity transpositions
recorded in the transposition vectors b and c, we can determine the value of det(P) · det(Q) as
2 · (tp mod 2)− 1.

Exercise 1.45: Is R1 = · · · = Rr = I equivalent to R1 · · ·Rr = I? Is C1 = · · · = Cr = I
equivalent to C1 · · ·Cr = I?

Exercise 1.46: Show that each of the restricted Gauss matrices M1, . . . , Mr computed in the
Gaussian-elimination LU-decomposition algorithm is an upper-triangular matrix.

Note in practical application, none of the matrices C1, . . . , Cr, R1, . . . , Rr, or M1, . . . , Mr need to
be computed. They are effectively replaced by b, c, and U . Thus none of the bracketed operations
in the LU-decomposition algorithm need to be done!

Exercise 1.47: Show that |Uij | ≤ 1 for 1 ≤ i < j ≤ k. Hint: complete-pivoting implies that
the value z in step 6 of the Gaussian-elimination LU-decomposition algorithm is no greater in
magnitude than 1.

Exercise 1.48: When finite-precision floating-point arithmetic operations are used, the com-
puted rank r may be in error. Is the computed value r more likely to be an underestimate or an
overestimate? What is the probability that r is correct under suitable randomness assumptions?

Exercise 1.49: Let A be an n× n non-singular matrix. Show that the Gaussian-elimination
LU-decomposition algorithm with complete-pivoting applied to the matrix A chooses pivot ele-
ments such that no two pivot elements lie in the same row or in the same column of A or any
iteration instance of the matrix L derived iteration-by-iteration from A.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 15

It remains to demonstrate that the matrix U computed in the Gaussian-elimination LU-decomposition
algorithm is the same as the matrix B−1Q. We have

B−1Q = (C1M1C2M2 · · ·CrMr)
−1C1C2 · · ·Cr = M−1

r C−1
r M−1

r−1C
−1
r−1 · · ·C−1

2 M−1
1 C−1

1 C1C2 · · ·Cr,

or equivalently,

B−1Q = M−1
r (Cr(M

−1
r−1(Cr−1(· · · (C3(M

−1
2 (C2M

−1
1 C2))C3)) · · ·))Cr).

Recall that Ci = C−1
i = CT

i is a k × k permutation matrix corresponding to a transposition
transposek(i, j) where i ≤ j ≤ r.

Now, let wh be the k-vector such that Mh = I + eT
h wh. Recall that M1, M2, . . . , Mr are restricted

Gauss matrices. For h = 1, . . . , r, we have (wh) col 1 : h = 0 and (wh) col ((h + 1) : k) =
−[L row h col ((h + 1) : k)]/Lhh as computed in step 6. Then M−1

h = I − eT
h wh.

Now C2M
−1
1 C2 = C2(I − eT

1 w1)C2 = C2IC2− (C2e
T
1)(w1C2) = I − eT

1 (w1C2). This follows because
the row-permutation matrix C2 exchanges row 2 with row j where j ≥ 2, so that C2e

T
1 = eT

1 . And,
C2 = C−1

2 , so C2IC2 = I.

Also note that since the column-permutation matrix C2 exchanges column 2 with column j where
j ≥ 2, we have w1C2 col 1 = (w1) col 1; thus (w1) col 1 remains 0 and I − eT

1 (w1C2) remains a
restricted Gauss matrix.

Next, M−1
2 (C2M

−1
1 C2) = (I−eT

2 w2)(I−eT
1 (w1C2)) = I−eT

1 (w1C2)−eT
2 w2, since eT

2 w2e
T
1 (w1C2) =

Ok×k. And thus, C3(M
−1
2 (C2M

−1
1 C2))C3 = I − eT

1 (w1C2C3)− eT
2 (w2C3).

Continuing in this manner, we finally obtain

B−1Q = I −
∑

1≤i≤r

eT
i (wiCi+1 · · ·Cr).

But, [wiCi+1 · · ·Cr] col (1 : i) = 0 and [wiCi+1 · · ·Cr] col ((i + 1) : k) is the final value of
U row i col ((i+1) : k) computed in the Gaussian-elimination LU-decomposition algorithm above.
Thus B−1Q = U , where U row i = ei + wiCi+1 · · ·Cr. [QED]

Exercise 1.50: Show that U is a k × k upper-triangular matrix, and show that diag(U) =
(1, . . . , 1).

When we have obtained r and L and U and P (or equivalently b) and Q (or equivalently c) such that
PAQ = LU , we can use the process described above to solve xA = v for any given righthand-side
vector v that admits a solution with two back-substitution steps, and two vector permutations.

Algorithmically, the process to solve xPTLUQT = v is:

1. Compute v ← vQ by permuting v according to the inverse of the permutation determined by
the transposition vector c.

2. Compute y such that yU = v by back-substitution.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 16

3. If y col [(r + 1) : k] 6= 0 then (‘xA = v’ is inconsistent; exit.)

4. z col [(r + 1) : n]← 0.

5. Compute [z col (1 : r)] such that [z col (1 : r)][L row (1 : r) col (1 : r)] = [y col (1 : r)] via
back-substitution.

6. Compute x← zP by permuting z according to the permutation determined by the transposition
vector b.

7. exit.

In detail, this is:

1. for i = 1, 2, . . . , r: swap vi with vci
.

2. for i = 1, 2, . . . , k : (yi ← vi; for j = 1, . . . , i− 1 : (yi ← yi − Ujiyj)).

3. If y col [(r + 1) : k] 6= 0 then (‘xA = v’ is inconsistent; exit.)

4. z col [(r + 1) : n]← 0.

5. for i = r, r − 1, . . . , 1 : (zi ← yi; for j = i + 1, . . . , r : (zi ← zi − Ljizj); zi ← zi/Lii).

6. x← z; for i = r, r − 1, . . . , 1: swap xi with xbi
.

7. exit.

Note this algorithm destroys the input righthand-side vector v.

Exercise 1.51: Why does the loop in step 1 run for i = 1, . . . , r rather than i = 1, . . . , k?

Exercise 1.52: Can you revise the above algorithm to permute v into the vector y during
step 2 and both prevent destroying v and save some small amount of computation?

Exercise 1.53: Show that we can dispense with the vector z in the algorithm above.

Exercise 1.54: Use the fact that U row (r + 1) : k col (r + 1) : k = I to show that step 2 can
be written as: for i = 1, 2, . . . , k : (yi ← vi; for j = 1, . . . ,min(i− 1, r) : (yi ← yi − Ujiyj)).

Exercise 1.55: Explain step 3.

Solution 1.55: When r < k, our k equations are linearly-dependent if they are consistent.
In this case, L col [(r + 1) : k] = On×(k−r), so the equations zL = y are not satisfiable if
y col [(r+1) : k] is not 0, and hence does not match the lefthand-side vector (zL) col [(r+1) : k].

Exercise 1.56: Show that Lii is never 0 in step 5.

Exercise 1.57: Give the algorithm for solving for the vector y in AyT = wT, given the
LU-decomposition of the n × k matrix A and the righthand-side vector w. Here y ∈ Rk and
w ∈ Rn.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 17

We have seen that, given the LU-decomposition A = PTLUQT, the linear equations xA = v can
be written xPTLU = vQ and when the equations xA = v are consistent, x can be computed as
x = zP where z satisfies zL = y := vQU−1. When the equations xA = v are consistent, the
n-vector z belongs to the solution flat yL+ + nullspace(L). Thus the solution flat of the linear
equations xA = v is {xP ∈ Rn | x ∈ vQU−1L+ + nullspace(L)}.

Exercise 1.58: Recall that the n× k matrix L =

[

J 0
K 0

]

where J is an r × r non-singular

lower-triangular matrix and K is an (n − r) × r matrix. Show that the k × n matrix L+ =
[

J−1 0
0 0

]

. Hint: L+L is the projection onto rowspace([J K]).

The solution flat yL++nullspace(L) can be constructed as follows. The linear equations zL = y are

just the linear equations (z1 z2)

[

J 0
K 0

]

= (y1 0) where z = (z1 z2), y = (y1 0), z1 is an r-vector,

z2 is an (n − r)-vector, J is an r × r non-singular lower-triangular matrix, K is an (n − r) × r

matrix, and y1 is an r-vector. Altogether the matrix

[

J 0
K 0

]

is an n× k matrix and the vector

(y1 0) is a k-vector.

The equations zL = y reduce to z1J + z2K = y1. We can fix z2 to be any vector in Rn−r and take
z1 to be the solution z1 = (y1−z2K)J−1 of the equations z1J +z2K = y1 in order to form a solution
of zL = y. This set of solutions of zL = y is {((y1− z2K)J−1 z2) ∈ Rn | z2 ∈ Rn−r} and this is the
same set as yL+ + nullspace(L) where yL+ = (y1J

−1 0) and nullspace(L) = {((−z2K)J−1 z2) ∈
Rn | z2 ∈ Rn−r}. (Note (−z2KJ−1 z2)

[

J 0
K 0

]

= (−z2K + z2K 0) = 0.)

Exercise 1.59: Recall that nullspace(AB) = nullspace(A) for conformable matrices A and
B when the columns of B are linearly-independent. Let A be an n × k matrix with the LU-
decomposition PTLUQT. Show that nullspace(A) = nullspace(L)P .

Solution 1.59: PA = LUQT, so nullspace(PA) = nullspace(L), and

nullspace(PA) = {x ∈ Rn | xPA = 0}
= {xPT ∈ Rn | xPTPA = 0}
= {xPT ∈ Rn | xA = 0}
= nullspace(A)PT.

Thus nullspace(L)P = nullspace(A).

Exercise 1.60: Revise the back-substitution algorithm given above for computing x that
satisfies xA = v to compute a barycentric basis for the solution flat of xA = v. Hint: take
z col (r + 1) : n to be each of the (n− r)-vectors 0, e1, . . . , en−r in step 4.

If we wish to solve just the single system of equations xA = v, we may save some time by appending
v to A as A row (n+1), and then using Gaussian elimination (with pivot positions and values in A)

to convert the augmented matrix

[

A
v

]

to lower-triangular form





J 0
K 0
w u



 where the row [w u] is

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 18

the result of processing v with the Gaussian elimination steps applied to the columns of

[

A
v

]

, and

then using one back-substitution step to compute x; indeed this is often what is meant by Gaussian
elimination. The vector [w u] is equal to the vector y computed in step 2 in the back-substitution
procedure above. (Does this idea, in fact, save any time?)

Exercise 1.61: Show that the equations xA = v are inconsistent if and only if rank(A) 6=
rank

([

A
v

])

.

Exercise 1.62: We have PAQ = LU where the n × k matrix L =

[

J 0
K 0

]

and the k × k

matrix U =

[

Z W
0 I

]

where J is an r × r non-singular lower-triangular matrix, K is an

(n−r)×r matrix, Z is an r×r non-singular upper-triangular matrix with diag(Z) = (1, . . . , 1),
W is an r × (k − r) matrix, and I denotes an (n − r) × (n − r) identity matrix. Show that

PAQ = L̄Ū where L̄ =

[

J
K

]

and Ū =
[

Z W
]

.

Using the result of the above exercise we may re-examine solving the linear equations xA = v. We

have PAQ = L̄Ū where L̄ =

[

J
K

]

and Ū =
[

Z W
]

as described above. Let z = xPT and

w = vQ. Then xA = v is equivalent to zL̄Ū = w, and thus z

[

J
K

]

[

Z W
]

= w.

Therefore z

[

JZ JW
KZ KW

]

= w. Now write z = [z1 z2] where z1 ∈ Rr and z2 ∈ Rn−r. Then

[z1 z2]

[

JZ JW
KZ KW

]

= [z1JZ + z2KZ z1JW + z2KW] = w.

Since rank(A) = rank(JZ) = r, when we take z2 = 0 we have z1JZ = w col 1 : r and z1JW =
w col (r + 1) : k, and if these two vector equations are inconsistent, i.e., if the latter relation fails
to hold given the former, the linear equations xA = v are inconsistent. Otherwise z1 = (w col 1 :
r)(JZ)−1 and (w col 1 : r)Z−1W = w col (r + 1) : k and [z1 0]P = x.

It is common to use the number of floating-point arithmetic operations (flops) as a measure of the
cost of a numerical algorithm.

The loop-structure of the version of the Gaussian-elimination LU-decomposition algorithm given
above, not including the optional steps in brackets, is:

[for h = 1, . . . , m : { for i = h + 1, . . . , k : { 1 flop }; for j = h + 1, . . . , n : { 2 flops }}]
where m = min(n, k). If m = k, the outer-loop is effectively [h = 1, . . . , m − 1]. If k > n, the
inner-loop: [j = h + 1, . . . , n] is empty when h = m, and there are just k − n flops used in the
h = m iteration.

Thus the total cost in flops, C, for the Gaussian-elimination LU-decomposition algorithm applied

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 19

to a rank m n× k matrix is:
∑

1≤h≤m−1

∑

h+1≤i≤k



1 +
∑

h+1≤j≤n

2



+ δmn(k − n).

And thus,

C =
∑

1≤h≤m−1



k − h +
∑

h+1≤i≤k

2(n− h)



+ δmn(k − n)

=
∑

1≤h≤m−1

[k − h + 2(n− h)(k − h)] + δmn(k − n)

=
∑

1≤h≤m−1

[

(1 + 2n)k + 2h2 − h(1 + 2n + 2k)
]

+ δmn(k − n)

= (1 + 2n)k(m− 1) + 2





∑

1≤h≤m−1

h2



−





∑

1≤h≤m−1

h



 (1 + 2n + 2k) + δmn(k − n)

= (1 + 2n)k(m− 1) + 2

[

m3

3
− m2

2
+

m

6

]

− 1

2
m(m− 1)(1 + 2n + 2k) + δmn(k − n)

= (1 + 2n)k(m− 1) +

[

2

3
m3 −m2 +

1

3
m

]

− 1

2
(m2 −m)(1 + 2n + 2k) + δmn(k − n).

When n = k = m, we have C = 2
3m3 − 1

2m2 − 1
6m. (Can you explain why 2

3m3 − 1
2m2 − 1

6m is
always a non-negative integer when m ∈ Z+? (Other than the fact that it is a count of operations.)
Is it sufficient to consider m ∈ {0, 1, 2, 3, 4, 5}?)

Note the number of flops used is not a very good indicator of the total cost of the Gaussian-
elimination LU-decomposition algorithm, since there is a substantial cost in searching for a maximal-
magnitude pivot element in each iteration.

Exercise 1.63: What is the maximum number of times we read an element of the matrix L,
given as a function of n and k, in the Gaussian-elimination LU-decomposition algorithm above,
not including the optional steps in brackets?

Solution 1.63: Let m = min(n, k). Then the maximum number of L-reads is:
∑

1≤h≤m

[(n− h + 1)(k − h + 1) + 1 + 2n + 2k + (k − h)(1 + 2(n− h))] =

m3 + 3
2(k − n + 2)m2 + 3[(n + 2)(k + 1

2)− 1
6k]m.

(When n = k = m, this is 4m3 + 10m2 + 3m.)

Exercise 1.64: How should we modify the Gaussian-elimination LU-decomposition algorithm
to apply to matrices and vectors with complex elements?

There are several modifications to the Gaussian-elimination LU-decomposition algorithm given
above that are practically desirable in a computer program.

The first issue has to do with dividing by Lkk (i.e., by a). Because of the possibility of computing
too-large or too-small values in various computations in the Gaussian-elimination LU-decomposition

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 20

algorithm or in a back-substitution algorithm, we should use an overflow handler that either sub-
stitutes the largest representable correctly-signed value in place of the unrepresentable overflowing
value (with a warning,) or declares our coefficient matrix to be indecomposable. Also, we should
use a machine with “soft” (unnormalized) underflow.

Because of round-off error the test “a = 0” in step 3 that protects us from dividing by zero
might usefully be replaced by “|a| < α”, where α is a small value. What “small” should be is a
complicated matter. A choice independent of the elements of the matrix A might be the rounding-
unit u of our computer. (Recall that the rounding-unit u is the smallest value such that 1 < 1 + u
in floating-point, and the “binary-precision” p is the number of bits used to represent numbers
in the interval [.5, 1); p = 1 − log2(u).) Really we should take α to be a value relative to the
magnitude of the numbers that produced a so that α represents the error in a; a compromise might

be α = u ·



 max
1≤i≤n
1≤j≤k

|Aij |



 /(nk), or even better, u times the average absolute value of the non-zero

elements of A. We could compute this value during the first pivot search in our LU-decomposition
algorithm.

If a is a value near the smallest normalized positive value, ǫ, of the machine then an overflow is
likely to occur before too long. (For 64-bit IEEE floating-point format, ǫ = 2−1022.) When a is
small, it is hard to know if a is an “approximation of zero” or not; this is another reason we want to
do a pivot search in order to avoid small pivot values whenever possible. (There is a costly device
called interval arithmetic that can be employed; with interval arithmetic we can know whether a
computed value could be zero if it were computed exactly.)

Note that the errors that arise in the various values of a and the other elements of L due to round-
off error means that the resulting elements of L and U are likely to be incorrect and the computed
value of the rank of A may be incorrect. Suppose rank(A) = r. Due to round-off error, it can be
unlikely that we will see Ljj = 0 for j = r + 1, . . . , min(n, k). The best we can do using Gaussian
elimination with ordinary floating-point arithmetic is to estimate the rank of A by treating final
small absolute values of diag(L) as zero.

Exercise 1.65: Will it always be the case that Ljj 6= 0 for j = 1, . . . , rank(A) when
the Gaussian-elimination LU-decomposition algorithm is executed with fixed finite-precision
floating-point arithmetic?

In some cases we want to enforce a requirement that the n×k matrix A be of full-rank: rank(A) =
min(n, k). We can modify A if necessary to do this. In this circumstance, we may replace the
statement “if a = 0 then (r ← h−1; exit)” in step 3 with “if |a| < ε then {a← Sign(a)(|a|+2·m)}”,
where Sign(a) = 1 if a ≥ 0 and Sign(a) = −1 otherwise, and where m is a small positive value
[PTVF92]. (We may also want to issue a warning or set a flag to indicate when this modification
occurs.) Suitable choices for m might be the value 100ε or ε+minAij 6=0 |Aij |/100. (What is a suitable
choice for ε?) This device of forcing A to have full-rank is also a “stabilization” device since adding
suitable constants to each diagonal element of an n×n matrix to force it to be non-singular usually
improves its “condition” for processing by the Gaussian-elimination LU-decomposition algorithm.

The second issue has to do with the cost of searching for a pivot element. The Gaussian-elimination
LU-decomposition algorithm given above processes the columns of A one-by-one; The processing of

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 21

a single column consists of permuting the eligible rows and columns of A to bring a non-zero value
to the diagonal position in the column being processed (i.e., for column j, the diagonal position is
row j of column j,) and then subtracting multiples of this column from other columns to “zero-out”
the row or “tail” of the row of that diagonal position.

In each iteration, the non-zero diagonal element holding our pivot value, after permuting to bring it
into the diagonal, (denoted by a in the Gaussian-elimination LU-decomposition algorithm,) is called
the pivot element in that iteration, and the process of “zeroing-out” or eliminating elements in the
pivot-element row is called elimination, specifically the process of “zeroing-out” (“eliminating”) the
elements in the pivot-element row following the pivot-element itself is called tail-elimination,) so
the Gaussian-elimination LU-decomposition algorithm consists of min(n, k) or fewer tail-elimination
operations. (In general, in contrast to a tail-elimination step, a single full-elimination step applied
to a matrix A with respect to the pivot element Aij is generally taken to be just the transformation
effected by the post- or pre-multiplication of A by the appropriate (non-restricted) Gauss matrix
that converts A row i to ej , or alternately A col j to eT

i when a “transposed” form of Gaussian
elimination is used.)

In step 2 of the Gaussian-elimination LU-decomposition algorithm, the search for the element with
the largest absolute value in the sub-array L row [h : n] col [h : k] is called a complete pivot search,
(or just complete-pivoting,) and the element Lpq = a that is found is the pivot element at iteration h.
Using the element with the largest absolute value generally results in the best numerical “stability”
– we generally obtain close to the least practicable error in the resulting solution vector or vectors
computed based on the lower-triangular matrix L. Complete pivot searching is time-consuming.
Nevertheless, in order to sucessfully terminate and to guarantee the exact form of the matrix L
specified above in the case of a singular matrix, and even for many non-singular matrices, we need
some sort of pivot search; we must, at least, search for a non-zero element.

Exercise 1.66: If the matrix A has non-zero diagonal elements A11, A22, . . . , Amm where
m = min(n, k), is it necessary to use a pivot search in constructing the LU-decomposition of A?
That is, can the h-th diagonal element of L as modified in the prior iteration serve as the pivot
element in iteration h?

Exercise 1.67: Can we really guarantee we will get a close approximate solution to xA = v in
the case where A is non-singular by using the LU-decomposition algorithm given above, followed
by two back-substitution computations done in 64-bit floating-point arithmetic?

Solution 1.67: It depends on what the meaning of ‘close approximation’ is.

When all we care about is computing the unique solution to xA = v when it exists, then there
is a practical compromise called cross-row partial pivot search, (or just cross-row partial-pivoting,)
where we replace the pivot-value search in step 2 with: “Determine the index p ∈ {h, . . . , n} such
that |Lph| = maxh≤i≤n|Lih|.”, and then take a = Lph in step 3 and drop the unnecessary unexecuted
statement “If h 6= q swap L col h and L col q in L” in step 5. A cross-row partial pivot search
effectively searches L col h, (across the rows of L col h,) for an element of maximum magnitude.
Note that if L row h : n col h = 0, our coefficient matrix A would be singular. (In fact, all of
L col h would be 0.)

Exercise 1.68: Try using cross-row partial-pivoting and back-substitution to solve the linear

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 22

equations [x1 + x2 + x3 = 3, x1 = 1, x2 + x3 = 2].

Much experience has shown that, for A non-singular, computing the solution to xA = v using
partial-pivoting is almost always stable and it is much less costly than complete-pivoting. When
the matrix A is non-singular, partial-pivoting will usually succeed in computing an acceptable
approximation to the LU-decomposition of A.

Exercise 1.69: Show that when cross-row partial-pivoting is used, the permutation matrices
C1, . . . , Cr will all be the k × k identity matrix I.

Exercise 1.70: Show that the maximum number of times we read an element of the matrix
L in the LU-decomposition algorithm using cross-row partial-pivoting, as a function of n and k
is: 2

3m3 − (k + n)m2 + ((2k − 1) + 1
3)m− 2nδmk where m = min(n, k). (When n = k = m, this

is 2
3m3 −m2 + 5

6m.)

We could also replace the pivot-value search in step 2 with: “Determine the index q ∈ {h, . . . , k}
such that |Lhq| = maxh≤i≤k|Lhi|.”, and then take a = Lhq in step 3 and drop the unnecessary
unexecuted statement “If h 6= p swap L row h and L row p in L” in step 5. In this case, the
permutation matrices R1, . . . , Rr will all be the n × n identity matrix. We shall call this variant
of partial-pivoting, cross-column partial pivot search. When A is non-singular and cross-column
partial-pivoting is used, we have AC1M1 · · ·CrMr = L, and Lii 6= 0 for 1 ≤ i ≤ n. Note, in this case,
we are, in essence, changing the basis of rowspace(A) by multiplying by the change-of-coordinates
matrix C1M1 · · ·CrMr to obtain a “lower-triangular” basis for rowspace(A).

Exercise 1.71: Why must A be non-singular to ensure that AC1M1 · · ·CrMr = L is ob-
tained with cross-column partial-pivoting? Hint: what happens in our Gaussian-elimination
LU-decomposition algorithm with a cross-column partial pivot search when a 0 pivot value
arises?

Exercise 1.72: Suppose A is a non-singular matrix so that n = k. Show that when complete
pivoting is used, |Lij | ≤ |Ljj | for 1 ≤ i ≤ n. Does this hold when a cross-row partial pivot
search is used? Does this hold when a cross-column partial pivot search is used?

When cross-column partial-pivoting is applied to an n × k matrix A with rank(A) < min(n, k),
as the Gaussian-elimination process progresses, (using exact arithmetic,) we will have one or more
rows where the value in the pivot position in that row, position (h, j), is zero, and all the values
Lh,j+1, . . . , Lh,k are zero as well. If we just continue the Gaussian-elimination process with the
next row of L (if any,) and the same column of L, (i.e, we take Lh+1,j as the next pivot element
position,) we will obtain a lower-triangular matrix with one or more zero diagonal elements. This
lower-triangular matrix, possibly with one or more zero diagonal elements, is called an echelon-
form matrix equivalent to the matrix A. Note if a lower-triangular echelon-form matrix L has
Ljj = 0 then L row j : n col j = 0. Any triangular matrix L equivalent to A gives the rank of A as
min(n, k)− (the number of 0’s in the diagonal of L). The rows of such a matrix can be permuted

to obtain a lower-triangular matrix L̂ =

[

J 0
K 0

]

with J an r × r lower-triangular non-singular

matrix.

We may modify our search for a pivot value in the sub-array L row h : n col h : k to accept

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 23

the first non-zero value encountered. Using the first encountered non-zero element as the pivot
element will be called minimal-pivoting. Note a pivot search is required in general, even when
rank(A) = min(n, k), since Lhh may be zero in any iteration.

There are strategies for pivot searching beyond a minimal pivot search, a cross-column or cross-row
partial pivot search, or a complete pivot search. For example, the following strategy, called a rook
pivot search, may be used [NP92].

[p← h; q ← h; a← Lhh; s← h; t← 0;
α : for i = h, . . . , k : if |Lpi| > |a| then {q ← i; a← Lpi}; if t 6= q then (t← q) else exit;

for i = h, . . . , n : if |Liq| > |a| then {p← i; a← Liq}; if s 6= p then (s← p; goto α) else exit].

This code computes p, q, and a such that a = Lpq is the pivot element selected for iteration h.
The selected pivot element is an element in L row h : n col h : k which is an element of maximum
magnitude in both its row and its column. This pivot search strategy generally performs only
a modest amount worse than complete-pivoting with respect to introduced round-off error and is
usually much less costly than complete-pivoting with an estimated average total cost of em(m−1)/2
comparisons for computing all the pivot elements needed to construct an LU-decomposition of a
“random” n× k matrix where m = max(n, k) [Fos97].

Exercise 1.73: Show that the rook pivot search algorithm given above always terminates.
(Does this remind you of the result that a function of two variables has a maximum in any
closed and bounded region in its domain?)

Exercise 1.74: Give an example n × n matrix where at least n2 comparisons are required
to find an element which is both row and column maximal using rook pivot searching. (The
algorithm given above uses 2n2 comparisons in the worst case.)

Exercise 1.75: Note that the rook pivot search algorithm above does unnecessary compar-
isons. Can you find a nice way to avoid these comparisons?

Exercise 1.76: Let A be an n×k matrix with unequal elements. Show that there are at most
min(n, k) elements of A that are both row and column maximal.

The rook pivot search algorithm, like cross-row or cross-column partial pivoting, is not guaranteed
to produce a non-zero pivot value; a zero pivot value may be chosen, even when an eligible non-zero
pivot value exists. This can happen when the submatrix L row h : n col h : k has L row h col h :
k = 0 and L row h : n col h = 0 with h < min(n, k). We can deal with this by reverting to a
minimal pivot search for a non-zero value in the situation where the rook pivot search results in a
zero pivot value. This is required to ensure that any n×k matrix A can be decomposed. (However,
when A is non-singular, the rook pivot search algorithm, like cross-row or cross-column partial
pivoting, will never fail to produce a non-zero pivot value, assuming exact arithemetic.)

Exercise 1.77: When can we avoid searching for a pivot value entirely, i.e., when can we
replace step 2 with “p← h; q ← h.”? (Does it suffice for Aii to be non-zero for 1 ≤ i ≤ n?)

Exercise 1.78: Can we save any time by searching for the next pivot value in L row ((h+1) :
n) col ((h + 1) : k) while we are subtracting suitable multiples of L row ((h + 1) : n) col h from

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 24

L row ((h + 1) : n) col ((h + 1) : k) in step 6, and not using step 2 after the first initial pivot
value is determined?

Solution 1.78: Probably we can obtain a constant-factor speed-up. The exact improvement
depends on how good a coder you or your compiler is. But the maximum running time of the
LU-decomposition algorithm remains O(min(n, k)3).

Third and finally, by dropping the assignment “U ← Ik×k” in step 1 and replacing the commands
“Lhi ← 0; Uhi ← z” with “Lhi ← z” in step 6, we can save space in the Gaussian-elimination
LU-decomposition algorithm by storing the elements Uij for 2 ≤ i < min(n, k) and i < j ≤ k
in the strictly-upper-triangular part of the matrix L (which would otherwise be 0) as it is being
formed; Uii is known to be 1 for i = 1, . . . , k, Uij is known to be 0 for 2 ≤ i > j < k, and
U row (n + 1 : k) = [Ok−n,n Ik−n,k−n] when n < k. Thus the k× k matrix U need not be explicitly
created as a separate array. (Note, if we do not save U in the upper-triangle of L, then we can save a
little time by replacing the statement “Swap L col h and L col q in L” with “Swap L row h : n col h
and L row h : n col q in L”.)

The “access” function for the elements of the matrix U stored in the upper-triangular part of L as
described above is:
[U(i, j) := if (i > j) return(0) else if (i = j) return(1) else if (i > n) return(0) else return(Lij)].
(This algorithm assumes 1 ≤ i ≤ k and 1 ≤ j ≤ k.)

Also note we may save space by dispensing with the assignment “L ← A” in step 1, and just
overwrite the matrix A with L and U (less the main diagonal of U) when the destruction of the
input matrix A is permissible.

Exercise 1.79: In machine language, or in a language like C with pointer data-types, we can
avoid the assignment “L← A” even when A is to be preserved; this saves nk scalar assignments,
although space for L is still required. We can do this by loading L with values during the first
iteration of the LU-decomposition where L row 1 col 2 : k is made zero in a manner compatible
with using the (strict) upper triangle of L to hold the values of U . Explain in more detail how
this can be done.

Exercise 1.80: Explain how we can store an n× n lower-triangular matrix, L, in n(n + 1)/2
locations: mem[0 : n(n+1)/2−1] so that we can access the matrix element Lij with the program

[if (i < j) return(0); k ← (i− 1)i

2
+ j − 1; return(mem[k]).] Give the corresponding access

function for an n× n upper-triangular matrix stored in n(n + 1)/2− 1] locations.

Suppose we use a row-indexing vector ri and a column-indexing vector ci maintained so that ri[j]
is the position of the original row j in the matrix L and ci[k] is the position of the original column
k in the matrix L. In order to do complete-pivoting, the rows and columns of L are exchanged in
step 5 of the LU-decomposition algorithm above; instead we may just swap the appropriate entries
of the indexing vectors ri and ci, and not swap the rows and columns of L in step 5. Then we
access the array L as Lri[j],ci[k] rather than Ljk. (With U stored in the upper-triangle of L, this
device also manages U appropriately.)

If, at the end of the LU-decomposition algorithm, we restore L to its final permuted state by

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 25

applying the permutation in ri to the rows of L and applying the permutation in ci to the columns
of L, then we save little time overall, and if computing Lri[j],ci[k] rather than Ljk costs two additional
memory accesses (assuming the indices j and k are kept in registers and have relatively small access
cost,) then we lose time overall. However, if we never restore L (and U) to the permuted state
where A = PTLUQT and use the indexing arrays ri and ci to access L (and U) when doing, for
example, back-substitution, then we may save some time by thus avoiding the row and column
swaps done in step 5 in the case where computing Lri[j],ci[k] rather than Ljk costs the equivalent
of much less than two additional accesses; otherwise we still do not save time by using indexing
arrays. (We might be able to keep the indexing arrays in fast memory for instance. Indeed, perhaps
a special LU-decomposition chip would be worth designing.)

Exercise 1.81: Quantify the relative costs in using indexing arrays, and avoiding row and
column swapping in complete-pivoting, under various assumptions about the additional cost of
computing Lri[j],ci[k] rather than Ljk.

The LU-decomposition PAQ = LU for a given n× k matrix A is trivially unique in the sense that
application of the complete-pivoting Gaussian-elimination LU-decomposition algorithm executes a
unique sequence of computations (assuming a systematic method of resolving ties in pivot searches
is used.)

The question remains as to whether there are more than one pair of lower-triangular and upper-
triangular matrices L and U of the forms produced by the Gaussian-elimination LU-decomposition
algorithm such that A = PTLUQT where the permutation matrices P and Q are produced in the
Gaussian-elimination LU-decomposition algorithm applied to the matrix A with P and Q fixed to
correspond to a specific admissible choice of the sequence of pivot elements.

We can see that it is plausible that this factorization is unique when n = k as follows. Let
rank(A) = r. Now consider the LU-decomposition PAQ = LU with A given and the admissible
permutation matrices P and Q fixed. We have rn − (r − 1)r/2 elements of L to be determined,
and (k− 1)k/2 elements of U to be determined (remember diag(U) = (1, . . . , 1).) We have nk non-
linear equations relating these rn− (r− 1)r/2+ (k− 1)k/2 values and we know these equations are
consistent. When rn−(r−1)r/2+(k−1)k/2 of our nk equations are independent, the values defining
the matrices L and U are uniquely determined. This is possible when nk ≥ rn− (r−1)r+(k−1)k,
or equivalently, when 2rn− (r− 1)r ≤ 2kn− (k− 1)k. And since r ≤ min(n, k), this is always the
case when n = k. (It turns-out, however, that a sufficent number of independent equations do not
generally exist when r < min(n, k).)

Exercise 1.82: Suppose we have two LU-decompositions: P1AQ1 = L1U1 and also P2AQ2 =
L2U2. Show that P2P

T
1 L1U1Q

T
1 Q2 = L2U2. Explain what this means about the uniqueness of

the LU-decomposition of A.

Exercise 1.83: Show that for any fixed sequence of non-zero pivot elements determining the
permutation matrices P and Q, the LU-decomposition PAQ = LU , with diag(U) = (1, 1, . . . , 1),
is unique when the matrix A is non-singular.

Solution 1.83: Suppose A is non-singular. If PAQ = L1U1 and also PAQ = L2U2 where
L1 and L2 are lower-triangular non-singular matrices and U1 and U2 are upper-triangular non-
singular matrices with diag(U1) = diag(U2) = (1, . . . , 1) then L1U1 = L2U2 so L−1

2 L1 = U2U
−1
1 .

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 26

And L−1
2 L1 is lower-triangular since the product of lower-triangular matrices is lower-triangular

and the inverse of a non-singular lower-triangular matrix is itself lower-triangular, and similarly
U2U

−1
1 is upper-triangular. But a matrix that is both lower-triangular and upper-triangular

is a diagonal matrix so L−1
2 L1 = U2U

−1
1 = D where D is an n × n diagonal matrix where

diag(D) = (diag(L−1
2), diag(L1)) = (diag(U2), diag(U−1

1)).

But the diagonal of the inverse of a non-singular triangular matrix M is specified by diag(M−1) =
(1/M11, 1/M22, . . . , 1/Mnn) so diag(D) = (1, . . . , 1) since diag(U2) = (1, . . . , 1) and diag(U−1

1) =
(1, . . . , 1). Thus L−1

2 L1 = U2U
−1
1 = I so L1 = L2 and U2 = U1, and thus, for given permutation

matrices P and Q, the LU-decomposition PAQ = LU is unique when A is non-singular and
P and Q are chosen to produce non-zero pivots in the Gaussian-elimination LU-decomposition
algorithm.

Let A be an n×k rank r matrix, and consider the LU-decomposition PAQ = LU . We can transform
this relation to write QTATPT = UTLT. Note LT is upper-triangular and UT is lower-triangular
with diag(UT) = (1, . . . , 1). We can “reshape” this relation to obtain the LU-decomposition of AT

as follows.

Suppose r ≤ n ≤ k. Then LT is a k × n matrix with LT row (r + 1) : k = 0 and UT is a k × k
lower-triangular matrix with diag(UT) = (1, . . . , 1). Let Û = LT row 1 : n; Û is just LT with k−n
zero-rows removed, so Û is an n × n upper-triangular matrix. Let L̂ = UT col 1 : n; L̂ is just UT

with columns (n+1) : k removed, so L̂ is a k×n lower-triangular matrix with diag(L̂) = (1, . . . , 1).
Now by examining a block-multiplication, we can see that UTLT = L̂Û .

Exercise 1.84: Write-out the block-multiplication which verifies that UTLT = L̂Û in the case
where r ≤ n ≤ k.

We have Û =

[

JT KT

0 0

]

with Û row (r + 1) : n = 0; thus we may take L̂ col (r + 1) : n to be

0, and then take Û row (r + 1) : n col (r + 1) : n to be I(n−r)×(n−r), and the product L̂Û remains

unchanged. Now Û is an n × n upper-triangular matrix with Ûii 6= 0 for 1 ≤ i ≤ n, so Û is
non-singular.

Now suppose r ≤ k < n. Then define the n × n upper-triangular matrix Û =

[

LT

0

]

; we have

appended n−k zero-rows to LT to form Û . Define the k×n lower-triangular matrix L̂ =
[

UT 0
]

;

we have appended n−k zero-columns to UT to form L̂. Again, by examining a block-multiplication,
we can see that UTLT = L̂Û . Also we can “transfer rank” from L̂ to Û in the same way we did
before. We can replace L̂ col (r + 1) : k with 0, and then replace Û row (r + 1) : n col (r + 1) : n
with I(n−r)×(n−r). Now we still have L̂Û = LTUT and Û is now an n× n upper-triangular matrix

with Ûii 6= 0 for 1 ≤ i ≤ n, so Û is non-singular. And L̂ is a k × n lower-triangular matrix with
L̂ii = 1 for 1 ≤ i ≤ r.

Exercise 1.85: Write-out the block-multiplication which verifies that UTLT = L̂Û in the case
where r ≤ k < n.

Thus, whether k ≤ n or k > n, the matrix product L̂Û satisfies the criteria for being an LU-
decomposition factorization, except that we do not necessarily have diag(Û) = (1, . . . , 1). But we

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 27

do have Ûii 6= 0 for 1 ≤ i ≤ n, so we can fix our factorization as follows.

Let the n × n diagonal matrix D = diag(Û). Now define L̃ = L̂D and define Ũ = D−1Û . This
makes diag(Ũ) = (1, . . . , 1) and makes diag(L̃ row 1 : r) = diag(D row 1 : r). Since Dii 6= 0 for
1 ≤ i ≤ n, we have L̃ii 6= 0 for 1 ≤ i ≤ r. Also L̃Ũ = L̂DD−1Û = L̂Û . Thus, if PAQ = LU is an
LU-decomposition of A, then QTATPT = L̃Ũ is an LU-decomposition of AT.

As a practical matter, for the purpose of solving non-singular systems of linear equations, we need
not insist on a particular form of LU-decomposition. The essential feature we require is just that
we can write PAQ = LU for the matrix A where P and Q are permutation matrices and L and
U are non-singular triangular matrices. When this is the case, we can solve the equations xA = v
or AxT = vT by two back-substitution computations together with the associated permutations
specified by the matrices P and Q.

Note the Gaussian-elimination LU-decomposition algorithm given above can be “transposed” and
recast to zero-out the “tail” parts of successive columns by subtracting suitable multiples of suc-
cessive pivot rows. In this case, we construct an upper-triangular matrix in the (copy of the) input
matrix A, and concommitantly construct a lower-triangular matrix of pivot-element-scaled values
with an implicit diagonal of ones. This version of the Gaussian-elimination LU-decomposition algo-
rithm performs row operations and is equivalent to multiplying A on the left by certain restricted
Gauss matrices (and by pivot-positioning permutation matrices on both the left and right.) There-
fore, just as in the column-operation algorithm, we obtain a factorization of the form PAQ = LU ,
where it is now the matrix L that is the non-singular factor with diag(L) = (1, . . . , 1).

Exercise 1.86: Write the row-operation version of the Gaussian-elimination LU-decomposition
algorithm.

Solution 1.86:

LU-Decomposition by Row-Operation Gaussian Elimination with Complete-Pivoting:
input: n× k matrix A, n ≥ 1, k ≥ 1.
output: L, U, b, c, r, R1, . . . , Rr, C1, . . . , Cr, M1, . . . , Mr

1. U ← A; L← In×n; b← 〈1, 2, . . . , n〉; c← 〈1, 2, . . . , k〉; h← 1.

2. Determine indices p ∈ {h, . . . , n} and q ∈ {h, . . . , k} such that |Upq| = maxh≤i≤n
h≤j≤k

|Uij |.

3. a← Lpq; if a = 0 then (r ← h− 1; exit).

4. bh ← p; ch ← q.
[

Let u = transposek(h, q). Define Ch = I col u.
Let u = transposen(h, p). Define Rh = I row u.

]

5. If h 6= q swap U col h and U col q in U ;
If h 6= p swap U row h and U row p in U .
{ Now Uhh = a.}

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 28

6.

{

Subtract multiples of U row h from U row (h + 1), U row (h + 2), . . . , U row n
to make U col h row [(h + 1) : n] = 0. Also compute L col h row [(h + 1) : n].

}

for i = h + 1, . . . , n :
(z ← Uih/a; Uih ← 0; Lih ← z; for j = h + 1, . . . , k : (Uij ← Uij − zUhj)).
[

Let w col (1 : h) = 0 and w col ((h + 1) : n) = −[U col h row ((h + 1) : n)]/Uhh.
Define Mh = Gn[h, w]T.

]

7. if h = n or h = k then (r ← h; exit);
h← h + 1; go to step 2.

At exit, this algorithm has determined the value r, the permutation matrices C1, . . . , Cr and
R1, . . . , Rr, the row-operation Gauss matrices M1, . . . , Mr, the lower-triangular matrix L, the
upper-triangular matrix U , and the permutations b and c in transposition vector form that
correspond to the permutation matrices P = RrRr−1 · · ·R1 and Q = C1C2 · · ·Cr.

The value r is the rank of the matrix A (assuming exact arithmetic.) The matrices R1, . . . , Rr

are n × n transposition permutation matrices, the matrices C1, . . . , Cr are k × k transposition
permutation matrices, and the matrices M1, . . . , Mr are n × n restricted row-operation Gauss
matrices.

The matrix L is a non-singular n × n lower-triangular matrix with diag(L) = (1, . . . , 1) and

the matrix U is an n × k upper-triangular matrix of the form

[

J K
0 0

]

, where J is an r × r

non-singular upper-triangular matrix and K is an (k − r)× r matrix such that

MrRr · · ·M1R1AC1 · · ·Cr = U and Rr · · ·R1AC1 · · ·Cr = LU = PAQ.

As with the column-operation version, the outputs L, U , b, c, and r are the only essential outputs.
Moreover, the variable part of the strictly-lower-triangular part of L can be returned in the strict
lower-triangle of the matrix U , thus saving space.

Exercise 1.87: Let B = MrRr · · ·M1R1, let P = Rr · · ·R1, and let Q = C1 · · ·Cr, where
Mr, . . . , M1, Rr, . . . , R1, and C1, . . . , Cr are produced by the row-operation Gaussian-elimination
LU-decomposition algorithm given above. Show that B is non-singular. Let L = PB−1. Show
that L is an n× n non-singular lower-triangular matrix with diag(L) = (1, . . . , 1).

Exercise 1.88: Give the algorithm for solving the linear system xA = v, given the row-
operation LU-decomposition of the matrix A.

Exercise 1.89: Can you construct a column-operation version and a row-operation version of
the Gaussian-elimination LU-decomposition algorithm which scan along the main-diagonal of
the input matrix “backwards” from lower-right to upper-left?

Exercise 1.90: Let PAQ = LU be an LU-decomposition of the n× k matrix A computed by
the column-operation version of the Gaussian-elimination LU-decomposition algorithm. Show

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 29

that, if we apply the row-operation version of the Gaussian-elimination LU-decomposition al-
gorithm to the k × n matrix AT using the same choice of pivot elements that correspond to
the row and column-permutation matrices being identical to the transposes of the column and
row-permutation matrices Q and P , then the LU-decomposition we obtain is identical to the
decomposition UTLT which we considered above.

Exercise 1.91: Let G =









∏

1≤i≤n
i6=r

En[r, i,−Aic]









En[r, r,−1+
1

Arc
], where A is an n×n matrix

with Arc 6= 0. What is the matrix product GA?

1.2 Variants of LU-Decomposition

Let m = min(n, k). Suppose the n × k matrix A satisfies rank(A) ≥ m − 1 and has its rows and
columns “pre-permuted” so that A can be decomposed into the product LU with no pivot search,
(which means the successive matrix elements Lhh computed during the LU-decomposition must be
non-zero since they are used as pivot values.) We shall call such an LU-decomposition with no
permutations involved a direct LU-decomposition, and we shall call an n × k matrix whose first
min(n, k) − 1 pivot values computed with no pivot search are non-zero a diagonal-pivot matrix.
(Note a diagonal-pivot matrix may have its last pivot value equal to zero since the last pivot value
never serves as a denominator.) When A is a diagonal-pivot matrix, the Gaussian-elimination
LU-decomposition algorithm can be written as follows (omitting the computation of the rank r.)

LU-Decomposition Gaussian Elimination with No Pivot Search:
input: n× k matrix A, n ≥ 1, k ≥ 1.
output: n× n lower-triangular matrix L, n× k upper-triangular matrix U , if successful.

1. L← A; U ← Ik×k; m← min(n, k).

2. for h = 1, . . . , m :
for j = 1, . . . , k :
for i = 1, . . . , n :
if i > h and j > h then {a← Lhh; if a = 0 then exit(“0 pivot encountered.”);

z ← Lhj/a; if i = n then (Lhj ← 0; Uhj ← z); Lij ← Lij − zLih}

3. exit.

Exercise 1.92: When can the loop “for h = 1, . . . , m :” in the procedure above be replaced
by “for h = 1, . . . , m− 1 :”? Hint: what if n = k?

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 30

This expository procedure contains unnecessary computation, but it exhibits the three “nested-
loop” structure of the LU-decomposition algorithm with no pivot search. This loop structure
generates mkn index-triples 〈h, j, i〉 and executes the loop body for each of these triples. (Here
m = min(n, k).) Note these mkn index-triples can be generated in any order! In particular, we
can order the three loops in any of six possible orders. (Does this observation allow us to develop
a parallel-computation version of our LU-decomposition algorithm?)

This procedure also allows us to see how to write a straightforward recursive description of Gaussian-
elimination LU-decomposition with no pivot search. For descriptive convenience, let n = k and
assume A is non-singular. The Gaussian-elimination LU-decomposition algorithm applied to the
n × n “pre-permuted” non-singular matrix A where searching for a pivot value is not required
generates two sequences of matrices: L(1) = A, L(2), . . ., L(n) = L and U (1) = I, U (2), . . .,
U (n) = U . Also U (h) row 1 : (h − 1) = U row 1 : (h − 1) and L(h) col 1 : h = L col 1 : h for
h = 1, . . . , n. The matrices L(h) and U (h) are the matrices L and U in the algorithm above at the
start of iteration h. For 1 ≤ i ≤ n, 1 ≤ j ≤ n, and h = 1, . . . , n− 1, we have:

L
(h+1)
ij =











0 for i ≤ h and j > i,

L
(h)
ij for j ≤ h,

L
(h)
ij − Uhj · L(h)

ih for j > h and i > h,

and Uij =



















0 for i > j,
1 for i = j,

L
(i)
ij

L
(i)
ii

for i < j.

Exercise 1.93: Show that U
(h)
ij =

{

Uij for i < h,
δij for j ≥ h.

With n = k, iteration h computes U row h and L col h + 1 and updates L col h + 2, . . ., L col n.

Note, for L
(h+1)
ij , the defining cases above are not disjoint, but they are consistent when overlap

occurs. (The cases defining L
(h+1)
ij can be made disjoint by replacing “for j ≤ h,” with “for j ≤ h

and i ≥ j.”)

We see that L
(i)
ii 6= 0 and Uii = 1 = L

(i)
ii /L

(i)
ii since, when n = k, the pre-permuted matrix A is

assumed to be non-singular (or at least properly-structured of rank n− 1,) so as to have each pivot

value that is used as a denominator be non-zero. Also, because L
(h)
ih = 0 for i < h and Uhj = 0 for

h > j, and Uhj = L
(h)
hj /L

(h)
hh = Lhj/Lhh for h ≤ j, we have L(h+1) col j = L(h) col j−Uhj(L

(h) col h)

for j 6= h and 0 = L
(h+1)
ih = L

(h)
ih − UhhL

(h)
ih for i < h, i.e., L

(h+1)
ij = L

(h)
ij − UhjL

(h)
ih for j 6= h or

i < h.

The fundamental recursive relations that characterize Gaussian-elimination LU-decomposition with
no pivot search thus are:

for h = 1, . . . , n − 1 : L
(h+1)
ij = L

(h)
ij − UhjL

(h)
ih for j 6= h or i < h, and L

(h+1)
ih = L

(h)
ih for i ≥ h

with Uij defined as above. This can be more succinctly written as: for h = 1, . . . , n− 1 : L
(h+1)
ij =

L
(h)
ij − (1 − δhj)UhjL

(h)
ih . We may “solve” this recursion relation to show again that LU = A as

follows.

Writing our recursion relation for h + 1, h, . . . , 2, we have: L
(h+1)
ij = L

(h)
ij − (1 − δhj)L

(h)
ih · Uhj ,

L
(h)
ij = L

(h−1)
ij − (1 − δh−1,j)L

(h−1)
i,h−1 · Uh−1,j , L

(h−1)
ij = L

(h−2)
ij − (1 − δh−2,j)L

(h−2)
i,h−2 · Uh−2,j , . . .,

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 31

L
(3)
ij = L

(2)
ij − (1− δh2)L

(2)
i2 ·U2j , and L

(2)
ij = L

(1)
ij − (1− δh1)L

(1)
i1 ·U1j . Now substituting the identity

for L
(2)
ij in the identity for L

(3)
ij , and so on until we substitute our obtained expression for L

(h)
ij in

the identity for L
(h+1)
ij , we obtain L

(h+1)
ij = L

(1)
ij −

∑

1≤t≤h

(1− δtj)L
(t)
it Utj .

And L
(1)
ij = Aij and L

(h)
ih = L

(h+1)
ih = · · · = L

(n)
ih = Lih, i.e., L

(h)
ij = Lij for j ≥ h, so L

(h+1)
ij =

Aij −
∑

1≤t≤h

(1− δtj)LitUtj . Thus Aij =
∑

1≤t≤h

(1− δtj)LitUtj + L
(h+1)
ij .

Take h = j − 1. Then Aij =
∑

1≤t≤j−1

(1 − δtj)LitUtj + L
(j)
ij . And, since L

(j)
ij = Lij and Ujj = 1,

Aij =
∑

1≤t≤j−1

LitUtj + LijUjj , so Aij =
∑

1≤t≤j

LitUtj .

And, since Lit = 0 for t > i and Utj = 0 for t > j, we have Aij =
∑

1≤t≤min(i,j)

LitUtj =
∑

1≤t≤n

LitUtj =

(L row i)(U col j). Thus A = LU . (Note the utility of using the Kronecker delta function above.)

Exercise 1.94: Suppose A ∈Mn×k with A = LU where L is an n× k lower-triangular matrix
and U is a k × k upper-triangular matrix. Let m = max(n, k). Extend A to an m×m matrix
by adding n− k columns of 0 values when n > k and adding k−n rows of 0 values when n ≤ k.
Denote this extended square matrix by Ā. Explain how to extend the matrix L to an m ×m
lower-triangular matrix L̄ and extend the matrix U to an m × m upper-triangular matrix Ū
such that Ā = L̄Ū .

Exercise 1.95: Let A =

[

a b
c d

]

with a 6= 0; A is a diagonal-pivot matrix. Show that the

LU-decomposition of A is

[

a 0
c d− cb/a

] [

1 b/a
0 1

]

.

Exercise 1.96: Let A be an n × n non-singular lower-triangular matrix. Show that A−1 is
also a lower-triangular matrix and diag(A−1) = (1/A11, . . . , 1/Ann).

Solution 1.96: Suppose every (n− 1)× (n− 1) non-singular lower-triangular matrix B has a
lower-triangular inverse with its diagonal elements equal to the reciprocals of the corresponding
diagonal elements of B.

Write the n × n matrix A as A =

[

A11 0
v B

]

where v is an (n − 1) × 1 matrix and B is an

(n−1)×(n−1) non-singular matrix. Then A−1 =

[

A−1
11 0

w B−1

]

where w = −A−1
11 B−1v. When

A is non-singular and lower-triangular, B is also non-singular and lower-triangular. Now by our
induction hypothesis, B−1 is a lower-triangular matrix with its diagonal elements formed by the
reciprocals of the diagonal elements of B, and thus A−1 is also a lower-triangular matrix with
its diagonal elements formed by the reciprocals of the diagonal elements of A. This establishes
the desired result by induction. Note the matching property holds for upper-triangular non-
singular matrices by a transposition of this argument. (The set of n × n lower-triangular (or

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 32

upper-triangular) non-singular matrices form a subgroup of the general linear group of n × n
non-singular matrices.)

Exercise 1.97: Let A be an n × n non-singular diagonal-pivot matrix with integer elements

and the LU-decomposition A = LU . Show that if each pivot value L
(i)
ii is ±1 then the elements

of L−1 and U−1 are integers and the elements of A−1 are thus integers.

Solution 1.97: For A = LU , diag(L) = (±1, . . . ,±1) implies that the Gaussian-elimination
LU-decomposition algorithm generates integer elements in L and U . Now we may show that
L−1 also has integer elements by induction. Write L = Ln to indicate that L is an n × n
lower-triangular matrix with diag(Ln) = (±1, . . . ,±1).

Now write Ln =

[

Ln−1 0
a ±1

]

where a ∈ Rn−1 with integer components. And write L−1
n =

[

L−1
n−1 0

b ±1

]

. (Recall L−1 is lower-triangular with diag(L−1) = (1/L11, . . . , 1/Lnn) when L is

lower-triangular.) Then I = LnL−1
n =

[

I 0

aL−1
n−1 ± b 1

]

, and aL−1
n−1±b = 0. Thus, b = ∓aL−1

n−1.

But a has integer components, and L−1
n−1 has integer elements by our induction hypothesis, so

the product aL−1
n−1 has integer components, and thus b has integer components and hence all

the elements of L−1
n = L−1 are integers.

A similar argument shows that U−1 also has integer elements given that U is an n × n upper-
triangular matrix with diag(U) = (±1, . . . ,±1). And when L−1 and U−1 have integer elements,
A−1 has integer elements. [QED]

The particular loop order [for j = 1, . . . , n : for i = 1, . . . , k : for h = 1, . . . , m :] corresponds to a
formulation of LU-decomposition with no pivot search known as Crout’s method; we give a variant
of Crout’s method below. To simplify the indexing, let us fix n = k. Then the variant Crout
method of LU-decomposition for an n×n matrix A is given in the following algorithm. (Note, like
Gaussian-elimination with no pivot search, Crout’s method only applies to diagonal-pivot matrices

A that have L
(h)
hh 6= 0 for h = 1, . . . , n− 1.

Exercise 1.98: Show that the n × n matrix A is a diagonal-pivot matrix if and only if each
of the matrices A row 1 col 1, A row 1 : 2 col 1 : 2, . . ., A row 1 : (n − 1) col 1 : (n − 1) are
non-singular.

Crout’s LU-Decomposition with No Pivot Search:
input: n× n diagonal-pivot matrix A, n ≥ 1.
output: n× n lower-triangular matrix L, n× n non-singular upper-triangular matrix U

1. L← On×n; U ← In×n.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 33

2. for j = 1, . . . , n :

{ for i = 1, . . . , j − 1 : Uij ←
1

Lii



Aij −
∑

1≤h≤i−1

LihUhj



;

for i = j, . . . , n : Lij ← Aij −
∑

1≤h≤j−1

LihUhj }.

3. exit.

Exercise 1.99: Do the sums in the above LU-decomposition algorithm look familiar?

Crout’s method is derived as follows. If we look at the matrix product A = LU where the n × n
matrix L is a lower-triangular matrix and the n × n matrix U is a upper-triangular matrix, we
obtain the n2 equations

Aij =
∑

1≤h≤min(i,j)

LihUhj for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

This is because Lih = 0 for i < h and Uhj = 0 for j < h.

The lower-triangle elements of L and the upper-triangle elements of U constitute n2+n “unknowns”,
and we have n2 (non-linear) equations LU = A; if we fix U11 = U22 = · · · = Unn = 1, we have
n2 unknowns remaining. Crout’s method is a systematic procedure for solving these n2 equations
for the undetermined n2 variables, and this method turns-out to recapitulate Gaussian-elimination
LU-decomposition with no pivot search.

Let m = min(i, j), so we may write Aij = Li1U1j + · · · + Li,m−1Um−1,j + LimUmj . When i ≥ j,
m = j and we have Umj = 1, so Lim = Lij = Aij − (Li1U1j + · · ·+ Li,m−1Um−1,j) for i ≥ j. When

i < j, m = i, so Umj = Uij =
1

Lim
[Aij − (Li1U1j + · · ·+ Li,m−1Um−1,j)] for i < j. Note if we

attempt to divide by Lii when Lii = 0, Crout’s algorithm will fail even though A is non-singular.
We require that A be “pre-permuted” to be a diagonal-pivot matrix; this is because we started
with A = LU to derive Crout’s method, rather than PAQ = LU . (Try applying Crout’s method

to

[

0 1
1 0

]

.)

If we use these n2 equations in the order specified by the loop-structure [for j = 1, . . . n : for i =
1, . . . n :] then we will compute Lij and Uij values in a sequence where all the needed L and
U elements are computed prior to their use in the above equations. This results in the Crout
procedure given above.

Exercise 1.100: Show that the values Lij for i ≥ j and Uij for i < j are computed in the
order L col 1, U col 2, L col 2, U col 3, . . ., L col (n−1), U col n, L col n. Explain how U col 1
is computed.

Crout’s method can be optimized as follows.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 34

Crout’s LU-Decomposition with No Pivot Search:
input: n× n diagonal-pivot matrix A, n ≥ 1.
output: n× n lower-triangular matrix L, n× n upper-triangular matrix U , if successful.

1. L← On×n; U ← In×n.

2. for j = 1, . . . , n :
for i = 1, . . . , n :
{m← min(i, j); s← Aij ; for h = 1, . . . , m− 1 : s← s− LihUhj ;

if i ≥ j then Lij ← s else { if Lii = 0 then exit(“0 pivot encountered”);Uij ← s/Lii }}.

3. exit.

Note this procedure shows the flop-count similarity with matrix multiplication: we compute an
(abbreviated) inner-product of L row i with U col j for 1 ≤ i ≤ n and 1 ≤ j ≤ n, resulting in
O(n3) floating-point operations.

Exercise 1.101: Show that the “optimized” Crout procedure above uses 2
3n3 + 3

2n2 − 1
6n

floating-point operations, which is 2n2 more flops than our direct Gaussian-elimination LU-
decomposition algorithm. Hint: sum the elements of the n × n matrix M defined by Mij =
min(i, j). Can you account for the extra 2n2 flops?

Exercise 1.102: Let A be an n×n orthogonal lower-triangular matrix so that A−1 = AT and
Aij = 0 for i < j. Show that A = I.

For j = 1, . . . , n, Crout’s algorithm computes the n undetermined variables, first in U col j and then
in L col j, (excluding the “pre-determined” variables Ujj .) A version of Crout’s method including
cross-row partial-pivoting and scaling is given in [PTVF92]. We shall give a similar version below.
The addition of cross-row partial-pivoting makes Crout’s method a viable procedure for comput-
ing the LU-decomposition of a non-singular matrix, generally without excessive contamination by
round-off error.

Exercise 1.103: Show that we can modify Crout’s procedure given above to overwrite the
matrix A with the lower-triangle of L and the upper-triangle of U , less the main-diagonal of
U . Also propose a more efficient way to achieve diag(U) = (1, 1, . . . , 1) than the assignment
“U ← In×n”.

Exercise 1.104: Show that, for any n×n matrix A, the Gaussian-elimination LU-decomposition
algorithm with no pivot search is equivalent to Crout’s LU-decomposition algorithm, i.e., exactly
the same termination state occurs and the same output L and U matrices are computed.

We give a version of Crout’s LU-decomposition algorithm with cross-row partial-pivoting below.
The input is an n×n non-singular matrix A. The output is an n×n matrix B whose lower-triangle
defines a non-singular lower-triangular matrix L, and whose strict upper-triangle defines a non-
singular upper-triangular matrix U with diag(U) understood to be (1, 1, . . . , 1). The output vector

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 35

b is a transposition vector defining the n× n row-permutation matrix P = I row perm(b)−1. The
obtained LU-decomposition of A is PA = LU .

Crout’s LU-Decomposition with Cross-Row Partial-Pivoting:
input: n× n non-singular matrix A, n ≥ 1.
output: n × n matrix B holding the lower-triangle of the n × n lower-triangular matrix L and
the strict upper-triangle of the n× n upper-triangular matrix U , and the n-transposition vector b
corresponding to the permutation matrix P such that PA = LU , if successful.

1. define L = B; define U = B.

2. B ← A.

3. for j = 1, . . . , n :
{for i = 1, . . . , n :
{m← min(i, j); s← Bij ; for h = 1, . . . , m− 1 : s← s− LihUhj ;
if i ≥ j then {Lij ← s; if i = j or s > v then {v ← s; x← i }}
else Uij ← s
};

if v = 0 then exit(“A is singular”);
bj ← x; if j 6= x then swap B row j and B row x;

for i = j + 1, . . . , n : Uij ← Uij/v
}.

4. exit.

Exercise 1.105: Explain why the above algorithm works as claimed.

Exercise 1.106: Let A be an n×n matrix and define A[i] := A row 1 : i col 1 : i; A[i] is called
the i-th principal submatrix of A. Take A[0] = [1]. Suppose that A has an LU-decomposition
computable with no pivot search, so A = LU and Lii 6= 0 for i = 1, . . . , n − 1. Show that
Lii = det(A[i])/det(A[i−1]). (This implies that the diagonal-pivot matrix A has a direct LU-
decomposition if and only if det(A[j]) 6= 0 for j = 0, 1, . . . , n− 1.)

Solution 1.106: We have A = LU where diag(U) = (1, . . . , 1) and Lii 6= 0 for 1 ≤ i ≤ n, so

A =

[

A[i] ∼
∼ ∼

]

=

[

L[i] 0

∼ ∼

] [

U[i] ∼
0 ∼

]

=

[

L[i]U[i] ∼
∼ ∼

]

where each occurrence of the symbol ‘∼’ denotes a submatrix of the appropriate size that
conforms to all the implicit constraints on its value dictated by where it appears. This means

A[i] = L[i]U[i] for 1 ≤ i ≤ n. Thus A[i] =

[

L[i−1] 0

∼ Lii

] [

U[i−1] ∼
0 1

]

for 2 ≤ i ≤ n.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 36

Recall we have the determinant identity det(

[

X 0
∼ Y

]

) = det(X)det((Y). Therefore det(A[i]) =

det(L[i])det(U[i]) =
[

det(L[i−1]) · Lii

] [

det(U[i−1]) · 1
]

= det(A[i−1]) · Lii for 2 ≤ i ≤ n. And
det(A[1]) = A11 = L11 so det(A[i]) = L11·L22 · · ·Lii for 1 ≤ i ≤ n. Thus Lii = det(A[i])/det(A[i−1]

where det(A[0]) = 1.

This formula for the pivot values we obtain with no pivot search serves as a test that determines
whether or not an n×n matrix A is a diagonal-pivot matrix. We compute det(A[1]), det(A[2]), . . .,
det(A[n−1]); if all these determinant values are non-zero, A is a diagonal-pivot matrix, otherwise
A is not a diagonal-pivot matrix.

Exercise 1.107: Let Vn be the n×n Vandermonde matrix











1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

1 xn x2
n . . . xn−1

n











. Show

that when x1, . . . , xn are distinct values, Vn is a diagonal-pivot matrix.

Exercise 1.108: Recall that we showed earlier that for x1, . . . , xn distinct, the Vandermonde
matrix Vn has the unique LU-decomposition Vn = LU where Lij = πj(xi) for 1 ≤ i ≤ n and
1 ≤ j ≤ n where πj(x) is the Newton polynomial (x− x1)(x− x2) · · · (x− xj−1) with π1(x) = 1
and πj(xi) = 0 for 1 ≤ i < j ≤ n, and Uij = hj−i(x1, . . . , xi) for 1 ≤ i ≤ n and 1 ≤ j ≤ n
where, for i ≥ 0 and k ≥ 0, hi(x1, . . . , xk) is the complete symmetric function hi(x1, . . . , xk) =

∑

j1+j2+···+jk=i
j1≥0,...,jk≥0

xj1
1 xj2

2 · · ·x
jk

k . Note h0(x1, . . . , xk) = 1, and we define hi(x1, . . . , xk) = 0 for i < 0.

Is using this pre-established LU-decomposition always a good way to solve the linear equations
cVn = y where y is a given n-vector and c ∈ Rn is the vector of coefficients of the interpolating
polynomial for (x1, y1), . . . , (xn, yn) to be determined? Hint: Is the round-off error introduced
while computing and using the elements of L and U in the course of back-substitution worse
than the error introduced in computing the LU-decomposition of Vn using cross-row partial-
pivoting? Note using cross-row partial pivoting is roughly equivalent to ordering x1, . . . , xn in
decreasing order. Can you find efficient error-reducing ways to compute hj−i(x1, . . . , xi) and
πj(xi) for 1 ≤ i ≤ n?

Let A be an n × k rank r matrix with a direct LU-decomposition of the form A = LU (where no
permutations are involved.) Recall rank(A) = r implies the submatrix L row (r+1) : n col (r+1) :
k = 0. Let m = min(n, k). The matrix A is an extended diagonal-pivot matrix in the sense that the
LU-decomposition A = LU can be computed with no pivot search, terminating when a 0 pivot value
is encountered. An extension of the exercise above shows that the extended diagonal-pivot matrix
A has the characterization that the principal submatrices A[0], A[1], . . ., A[r] are all non-singular,
and A[r+1], . . ., A[m] are all singular.

Exercise 1.109: Let A be an n × k rank r matrix with A[r] = A row 1 : r col 1 : r non-
singular. Let n = min(n, k). Show that det(A row (1 : h) col (1 : h)) = 0 for r < h ≤ m. Hint:
the rows of A row (r + 1) : n are all linear combinations of the vectors A row 1, . . ., A row r.

The LU-decomposition of the n× k rank r extended diagonal-pivot matrix A is determined by the

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 37

LU-decomposition of the r×r non-singular diagonal-pivot matrix A row 1 : r col 1 : r = A[r] =: A11.
(Note that in this discussion only, Lij , Uij , and Aij denote submatrices, not elements, of the matrices
L, U , and A.)

Write

[

A11 A12

A21 A22

]

=

[

L11 0
L21 L22

] [

U11 U12

0 U22

]

=

[

L11U11 L11U12

L21U11 L21U12 + L22U22

]

where L11,

U11, and U22 are non-singular triangular matrices.

Then L21 = A21U
−1
11 , U12 = L−1

11 A12, and L22 and U22 satisfy L22U22 = 0 so we may choose L22 = 0
and U22 = Ik−r,k−r. We have L22U22 = 0 because A is a rank r extended diagonal-pivot matrix and
hence there is an (n− r)× r matrix B such that B [A11 A12] = [A21 A22] (i.e., (B row j) [A11 A12]
is a linear combination of the rows of [A11 A12],) so BA11 = A21 and BA12 = A22 and

A22 = L21U12 + L22U22

= A21U
−1
11 L−1

11 A12 + L22U22

= BA11U
−1
11 L−1

11 A12 + L22U22

= BA11A
−1
11 A12 + L22U22

= BA12 + L22U22

= A22 + L22U22

and thus L22U22 = 0. Thus the extended diagonal-pivot matrix A has an LU-decomposition com-
putable with no pivot search, i.e., once L11 and U11 are determined, the entire LU-decomposition
of A is determined.

We can now see that the effect of the permutation matrices P and Q produced in our Gausssian-
elimination LU-decomposition algorithm is to permute the columns and the rows of the n×k matrix
A so that the principal submatrices (PAQ)[i] are all non-singular for i = 1, . . . , rank(A), and the
remaining principal submatrices (PAQ)[i] for i = rank(A) + 1, . . . ,min(n, k) are all singular, i.e.,
PAQ is an extended diagonal-pivot matrix.

Although any extended diagonal-pivot matrix has a direct LU-decomposition, not all matrices with
direct LU-decompositions are extended diagonal-pivot matrices when we relax the forms of the
factors L and U to merely be lower-triangular and upper-triangular matrices respectively without
further structural conditions. Of course such a relaxed LU-decomposition is less useful than the
strict form we focus on herein. Such relaxed direct LU-decompositions arise when either the first
r rows or the first r columns of a rank r matrix are not linearly-independent.

Exercise 1.110: Show that

[

0 0
1 2

]

=

[

0 0
1 1

] [

1 1
0 1

]

=

[

0 0
1 0

] [

1 2
0 0

]

.

Pavel Okunev and Charles Johnson [OJ97] show that an n × n matrix A has a direct (relaxed)
LU-decomposition A = LU if and only if rank(A[h]) + h ≥ rank(A row 1 : h col 1 : n) +
rank(A row 1 : n col 1 : h) for h = 1, . . . , n. They also give the following algorithm to compute
such a direct LU-decomposition.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 38

Okunev and Johnson’s Relaxed LU-Decomposition with No Pivot Search:
input: n× n Okunev matrix A, n ≥ 1.
output: n× n lower-triangular matrix L, n× n upper-triangular matrix U , if successful.

1. L← On×n; U ← On×n.

2. for h = 1, . . . , n :
[for i = 1, . . . , n :
[for j = i, . . . , n :

[if Aij 6= 0 then {L col h← A col j; U row h← (A row i)/Aij ; goto α};
if Aji 6= 0 then {L col h← A col i; U row h← (A row j)/Aji; goto α};
]

]

α: A← A− (L col h)(U row h).
]

3. exit.

Exercise 1.111: Explain why the above algorithm works. (Recall for n × n matrices A and

B, the product C = AB satisfies C =
∑

1≤h≤n

(A col h)(B row h).)

Froilán Dopico, Charles Johnson and Juan Molera [DJM06] have given a characterization of those
n × n matrices that have multiple semi-relaxed LU-decompositions with diag(L) = (1, . . . , 1) (or
equivalently, with diag(U) = (1, . . . , 1),) and shown how to generate all these LU-decompositions
in terms of the elements of L (or equivalently, U .)

Exercise 1.112: Show that

[

0 0
1 1

]

has an infinite number of semi-relaxed LU-decompositions.

Solution 1.112:

[

0 0
1 1

]

=

[

0 0
1 1− a

] [

1 a
0 1

]

for a ∈ R. How many semi-relaxed LU-

decompositions does

[

0 1
0 1

]

possess? (Note

[

0 1
0 1

]

=

[

1
a 0
0 1

] [

0 a
0 1

]

for a ∈ R− {0}.)

Exercise 1.113: Let LTn×n be the subset of all n× n non-singular lower-triangular matrices
in the set GLn×n(Rn). Show that LTn×n is a normal subgroup of the group GLn×n(Rn) of all
n × n non-singular matrices on Rn. Hint: use the QR-decomposition of an n × n non-singular
matrix AT to show that for any L ∈ LTn×n there exists L̄ ∈ LTn×n such that AL = L̄A, and
also show that for A ∈ GLn×n(Rn) and L1, L2 ∈ LTn×n, AL1 = AL2 implies L1 = L2. Can you
find some subgroups of LTn×n?

Exercise 1.114: What is the dimension of LTn×n?

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 39

Solution 1.114: The set of all n × n lower-triangular matrices is an algebra of dimension
n(n + 1)/2, and hence dim(LTn×n) = n(n + 1)/2. Note the set of all n × n strictly lower-
triangular matrices with diagonal (0, . . . , 0) is an algebra of dimension (n − 1)n/2 with the
interesting property that Ln = On×n for every member L.

When an n × n matrix A is a non-singular diagonal-pivot matrix, it has an LU-decomposition
A = LU , computable by the Gaussian-elimination LU-decomposition algorithm with no pivot
search, and all the diagonal elements of the lower-triangular matrix L that serve as the successive
pivot values are non-zero. This means we can “factor” the matrix L into a matrix product L̂D
where D is the diagonal matrix diag(L11, . . . , Lnn) and L̂ is the non-singular lower-triangular matrix
specified by L̂ col i = (L col i)/Lii for i = 1, . . . , n; this results in diag(L̂) = (1, . . . , 1). In this
situation, we have A = L̂DU , or relabeling to reuse the symbol L to denote L̂, we have A = LDU
where diag(L) and diag(U) are both (1, 1, . . . , 1) and D is a diagonal matrix.

Exercise 1.115: Let A be an n × n rank r extended diagonal-pivot matrix with the LU-
decomposition A = LU . Show that A can be written as L̂DU where L̂ is a lower-triangular
matrix with diag(L̂) = (1, . . . , 1) and D = diag(L11, . . . , Lr,r, 0, . . . , 0).

Now if A is a symmetric matrix as well as a non-singular diagonal-pivot matrix, then we can write
A = LDLT where L is a lower-triangular matrix with diag(L) = (1, . . . , 1) and D is a diagonal
matrix with non-zero diagonal elements. We may derive this decomposition from the decomposition
A = LDU .

When A is a symmetric non-singular diagonal-pivot matrix with A = LDU as described above,
we have (UT)−1AU−1 = (UT)−1LD. And [(UT)−1AU−1]T = (UT)−1AU−1 so (UT)−1AU−1 is
symmetric. But (UT)−1LD is the product of lower-triangular matrices so (UT)−1LD is itself
lower-triangular as well as symmetric. This means (UT)−1LD is is a diagonal matrix. But then
(UT)−1L is diagonal since D is diagonal.

We also have diag((UT)−1) = (1, . . . , 1) and diag(L) = (1, . . . , 1) so (UT)−1L = I. Therefore
L = UT and hence A = LDLT when A is a symmetric non-singular diagonal-pivot matrix. [QED]

Exercise 1.116: Given the quadratic form xAxT where A is an n×n symmetric non-singular
matrix with A = LDLT where L is a lower-triangular matrix with diag(L) = (1, . . . , 1) and
D = diag(d1, . . . , dn) with di ∈ R for 1 ≤ i ≤ n, show that the transformation x → xL
transforms the quadratic form xAxT into the diagonal quadratic form xDxT.

Now when A is a symmetric non-singular diagonal-pivot matrix with A = LDLT where L is a
lower-triangular matrix with diag(L) = (1, . . . , 1) and D is a diagonal matrix with Dii > 0 for

i = 1, 2, . . . , n, then we can define D
1

2 = diag(
√

D11, . . . ,
√

Dnn) and write A = LD
1

2 D
1

2 LT. (We
shall call a symmetric non-singular diagonal-pivot matrix where each pivot value is positive a
positive-definite matrix.)

But LD
1

2 D
1

2 LT = LD
1

2 (D
1

2)TLT = GGT where G = LD
1

2 . The decomposition A = GGT where G
is a lower-triangular matrix is called the Cholesky decomposition of A. Since the LU-decomposition
of a non-singular matrix is unique, the Cholesky decomposition of a positive-definite matrix is
unique. (Note if we admit complex elements, any symmetric non-singular matrix has a Cholesky
decomposition.)

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 40

When A is a positive-definite matrix (i.e., a symmetric non-singular positive diagonal-pivot matrix,)
with an LDLT decomposition where Dii > 0 for i = 1, 2, . . . , n, the Cholesky decomposition of A
can be computed with the following algorithm.

Cholesky-Decomposition:
input: n× n symmetric non-singular positive-definite matrix A, n ≥ 1.
output: n× n lower-triangular matrix G such that A = GGT

1. G← On×n.

2. for j = 1, . . . , n :

{Gjj ←



Ajj −
∑

1≤t<j

A2
jt





1

2

; for i = 1, . . . , n : Gij ←
1

Gjj



Aij −
∑

1≤t<j

AitAjt



}.

3. exit.

Exercise 1.117: Explain why the above algorithm is correct. Hint: derive the equations from
A = GGT in the way Crout’s method was obtained or see [GV89].

Exercise 1.118: Explain how to use the Cholesky decomposition of a symmetric non-singular
positive diagonal-pivot matrix A to solve the equations xA = v.

Exercise 1.119: Compute the number of flops needed to compute the n×n Cholesky matrix
G in the above algorithm assuming that computing a square-root is s times more costly than a
floating-point multiply.

We should include a test in the above algorithm to ensure that round-off error does not result in
trying to compute the square-root of a negative number, although for a well-conditioned matrix,
this is unlikely. We should also guard against dividing by a too-small value as we discussed with
respect to the Gaussian-elimination LU-decomposition algorithm. Golub and Van Loan [GV89]
discuss the “failure modes” of the above algorithm and discuss the error in G that is expected to
be introduced in terms of the elements of the input matrix A.

Note the QR-decomposition and the Cholesky decomposition are related. Let A be an n×n matrix
with the QR-decomposition A = QR where Q is an n × n orthogonal matrix and R is an n × n
upper-triangular matrix. Then ATA = RTQTQR = RTR; this is a form of LU-decomposition
of ATA as well as a generalized Cholesky decomposition. When A is non-singular, the Cholesky
decomposition of ATA is unique and RTR is that Cholesky decomposition.

Exercise 1.120: Let A be an n × n non-singular matrix. Show how to use the Cholesky
decomposition of the n× n matrix ATA to compute the QR-factorization of A.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 41

Exercise 1.121: Given the n × k rank r matrix A, suppose we have the LU-decomposition
PAQ = LU . Describe how we can easily obtain the decomposition A = FGT where F is an n×r
rank r matrix with linearly-independent columns, and G is a k× r rank r matrix with linearly-
independent columns. (Recall that this decomposition is the starting point for constructing the
Moore-Penrose pseudo-inverse matrix A+.)

Exercise 1.122: Show how to use the LU-decomposition PAQ = LU of the n × k matrix A
together with four back-substitution steps to solve the normal equations xAAT = bAT where
b ∈ Rk and x ∈ Rn. How much does this cost in comparison to computing B = AAT and then
solving xB = bAT by computing an LU-decomposition of B? Note AAT is symmetric, so B
can be computed at less cost than just multiplying A by AT. When can we employ a Cholesky
decomposition to solve the normal equations xAAT = bAT? (Recall that a vector x that satisfies
xAAT = bAT minimizes |xA− b|, and x = bA+ is such a vector with least norm.)

Exercise 1.123: Suppose A is an n × n non-singular matrix. Explain how to use the LU-
decomposition PAQ = LU to compute A−1. Hint: look at A−1A = I as n sets of linear
equations: xA = e1, . . . , xA = en.

Exercise 1.124: Explain how to use the LU-decomposition of the n×n non-singular matrix A
to efficiently compute the matrix product BA−1 where B is a given k×n matrix. Hint: consider
solving xiA = B row i for i = 1, . . . , k.

We stated above that when the n×n matrix A is non-singular, use of cross-column partial-pivoting
ensures that we can write AC1M1 · · ·CrMr = L, where L is an n×n non-singular lower-triangular
matrix (so that Lii 6= 0 for 1 ≤ i ≤ n.)

By multiplying at most v := n(n + 1)/2 particular non-singular elementary matrices on the right
of L, the non-singular matrix L can be reduced to the n × n identity matrix. These elementary
matrices H1, . . . , Hv are chosen to effect the same transformations as achieved by the following
program: [for i = n, n− 1, . . . , 2 : (for j = 1, 2 . . . , i− 1 : (Lij ← Lij − (Lij/Lii)Lii));
for i = 1, 2 . . . , n : (Lii ← Lii/Lii)].

Exercise 1.125: Let 1 ≤ j < i ≤ n. Show that the elementrary matrix that zeros Lij

is En[i, j,−Lij/Lii]. Then show that for 1 ≤ k ≤ n(n − 1)/2, the elementary matrix Hk is
En[i, j,−Lij/Lii] where i = p+1 and j = s−i(i−1)/2 with s = 1+n(n−1)/2−k and p = ⌊

√
2s⌋.

(Also, for n(n− 1)/2 + 1 ≤ k ≤ n(n + 1)/2, Hk = En[r, r, L−1
rr − 1] where r = k − n(n− 1)/2.)

Thus AC1M1 · · ·CrMrH1 · · ·Hv = I, so A−1 = C1M1 · · ·CrMrH1 · · ·Hv and
A = H−1

v · · ·H−1
1 C−1

r H−1
v M−1

r C−1
r · · ·M−1

1 C−1
1 . Note that H−1

1 , . . . , H−1
v , M−1

1 , . . . , M−1
r , and

C−1
1 , . . ., C−1

r are all elementary matrices or products of elementary matrices; thus A is written as
a product of elementary matrices. (What is the minimum number of n × n elementary matrices
that must be multiplied to guarantee that any non-singular n× n matrix can be produced?)

Exercise 1.126: Let A be an n×n non-singular matrix. Show that application of the algorithm
below to the matrix A exits at step 7 and that, at exit, B is indeed A−1.

1. h← 1; B ← In×n.

2. a← 0; for i = h, . . . , n : if (Ahi 6= 0) then {a← Ahi; q ← i; goto step 3}.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 42

3. if a = 0 then exit(“A is singular.”).

4. if (q 6= h) then {swap A col h and A col q in A; swap B row h and B row q in B; }.
5. A col h← (A col h)/a; B col h← (B col h)/a.

6. for i = 1, . . . , n :
if (i 6= h) then {A col i← (A col i)−Ahi(A col i); B col i← (B col i)−Ahi(B col i)}.

7. if h = n then exit(“B = A−1.”).

8. h← h + 1; go to step 2.

Exercise 1.127: Can any n × n matrix, not necessarily non-singular, be represented by a
product of elementary matrices, as defined here?

Exercise 1.128: Let A be an n× n symmetric matrix. Show that there exists a non-singular
matrix F such that FAFT is a diagonal matrix of the form diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0)
where there are s1 ones, followed by s2 minus-ones, followed by s3 zeros, with s1 ≥ 0, s2 ≥ 0,
s3 ≥ 0, and s1 + s2 + s3 = n. Hint: Let B denote the matrix C1M1 · · ·CrMr in the identity
AC1M1 · · ·CrMr = L expressing the reduction of A to lower-triangular form via cross-column
partial-pivoting. Now express B as a product of elementary matrices Ek · · ·E2E1. Then define
FT = BST

1 · · ·ST
n where Si = En[i, i, |Lii|1/2 − 1]. The values s1, s2 and s3, are symmetric-

congruence invariants; that is, if A and X are congruent n × n symmetric matrices, then
(s1, s2, s3) for A is the same as (s1, s2, s3) for X.

Exercise 1.129: Give a recursive version of the Gaussian-elimination LU-decomposition algo-
rithm where the LU-decomposition PTLUQT of an n×k matrix A is computed from the similar
LU-decomposition of the (n− 1)× (k − 1) matrix A row 2 : n col 2 : k.

Neither Gaussian elimination with complete-pivoting nor Gaussian elimination with partial-pivoting
together with back-substitution are guaranteed effective algorithms per se since the relative error
introduced in the solution vector x that is intended to satisfy xA = v can be arbitrarily large in
certain “ill-conditioned” cases. (The error in a solution x̂ to xA = v is measured by the quantity
|x− x̂| and the relative error is |x− x̂|/|x| when |x| 6= 0.) It may be more appropriate to say that
Gaussian elimination with complete-pivoting or partial-pivoting is effective for well-conditioned
problems.

The condition of an n× n system of linear equations xA = v is measured by the condition number
κ(A) of the coefficient matrix A. The condition number depends on the norm being used, but all
norms are comparable in a sense that we shall make precise below. The ∞-norm condition number

of the n × n matrix A is defined as κ∞(A) =



max
1≤i≤n

∑

1≤j≤n

|Aij |



 ·



max
≤i≤n

∑

1≤j≤n

|(A−1)ij |



 when

A is non-singular and ∞ when A is singular; κ(A) essentially measures how close to singular the
coefficient matrix A is. The problem xA = v is ill-conditioned when κ(A) is large (what ‘large’
means is dependent on the accuracy desired.)

One way to improve the condition of the matrix A, other than “damaging” A by adding to its di-
agonal elements, is to replace A by AS and v by vS, where the k× k matrix S is a diagonal matrix
that scales the j-th equation x(A col j) = vj by the constant Sjj to obtain the equivalent equa-
tion x(A col j)Sjj = vjSjj . Generally we want to choose the scaling factors S11, S22, . . . , Skk to

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 43

make each equation similar in “size”. For example, we could use Sjj = 1/|A col j|, or Sjj =
1/ max1≤i≤n |Aij |. Note this scaling could be done, either explicitly or implicitly, within the
Gaussian-elimination LU-decomposition algorithm given above. If we choose the elements of the
scale matrix S to be powers of 2, we will not directly introduce any additional round-off error in
our LU-decomposition. We can obtain more flexiblity by scaling both rows and columns of A; given
scale matrices T and S, we can use the LU-decomposition of TAS to solve yTAS = vS for y and
then compute x = yT . Again, it is convenient to take the scale matrices T and S to be diagonal
matrices.

One reasonable way to define the scaling matrices T and S is as follows. Let ci denote an index
j such that |Aij | = maxm |Aim| and let rj denote an index i such that |Aij | = maxm |Amj |. Then
we may define Tij = Sij = 0 for i 6= j and Tii = f(|Ai,ci

|−1/2) and Sjj = f(|Arj ,j |−1/2) where
f(x) = δx0 + x.

Note that using scaling subverts the notion of using an eligible element of maximum magnitude in
the current coefficient matrix as the pivot value in each iteration. However using large magnitude
pivot values in early iterations might, in some circumstances, cause us to have to use excessively
small magnitude elements as the pivot values in later iterations; scaling may ameliorate this po-
tential problem. It is difficult to know in advance when scaling will be beneficial, and, in that case,
what scale factors should be used. An algorithm for computing scale factors has been proposed by
Olschowka and Neumaier [ON96].

Note that scaling with diagonal scale matrices T and S can be “virtually” implemented without
actually scaling any of the coefficients in the matrix A; this avoids introducing round-off error due
to scaling. All that such implicit scaling really does is change our choice of pivot elements when
using a complete or partial or rook pivot search. (Although generally we only consider scaling when
we are using a cross-row or cross-column pivot search.)

The fundamental computations in our Gaussian-elimination LU-decomposition algorithm are

Lij ← Lij −
Lhj

Lhh
Lih and Uhj ←

Lhj

Lhh
.

When diagonal scaling matrices T and S are used, these computations become

Lij ← Tσi,σi
LijSρj ,ρj

−
Tσh,σh

LhjSρj ,ρj

Tσh,σh
LhhSρh,ρh

Tσi,σi
LihSρh,ρh

and Uhj ←
Tσh,σh

LhjSρj ,ρj

Tσh,σh
LhhSρh,ρh

,

where L row i holds the elements derived from A row σi and L col j holds the elements derived
from A col ρj during iteration h. Thus σ and ρ are permutation vectors that keep track of the row
and column exchanges done to bring the selected pivot element to the diagonal position Lhh at
iteration h for h = 1, . . . , n.

These computations reduce to

Lij ← Tσi,σi

[

Lij −
Lhj

Lhh
Lih

]

Sρh,ρh
and Uhj ←

LhjSρj ,ρj

LhhSρh,ρh

.

Thus Lij is computed as Tσi,σi
Sρj ,ρj

times the unscaled value that would normally be assigned
to Lij , and Uhj is computed as (Sρh,ρh

)−1Sρj ,ρj
times the unscaled value that would normally be

assigned to Uhj .

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 44

Since this computation of Lij holds in the initial iteration with L = A, it holds in every subsequent
iteration as well. Thus we can dispense with multiplying Lij by Tσi,σi

Sρh,ρh
and multiplying Uhj by

S−1
ρh,ρh

Sρj ,ρj
altogether as long as we take into account this “virtual” implicit scaling when selecting

the pivot element that is permuted into Lhh in each iteration!

All we need do to employ implicit scaling with the diagonal scale matrices T and S is to initialize
the permutation vector σ to 〈1, 2, . . . , n〉 and initialize the permutation vector ρ to 〈1, 2, . . . , k〉
in step 1, and replace step 2 in our Gaussian-elimination LU-decomposition algorithm with the
statements

{Determine indices p ∈ {h, . . . , n} and q ∈ {h, . . . , k} such that |Lpq| = maxh≤i≤n
h≤j≤k

|Tσi,σi
LijSρj ,ρj

|;

Swap σp and σh; Swap ρq and ρh}.

This, in effect, chooses a sequence of pivot elements that sacrifices maximal magnitudes for lower
variation. (Note there is no reason to maintain both the permutations σ and ρ and also the
transposition vectors b and c in our LU-decomposition algorithm.)

We can justify this conclusion as follows. Let PAQ = LU be the LU-decomposition of the matrix
A computed using the pivot elements determined by the pivot search procedure using the scale
matrices T and S given above. We have P = I row σ and Q = I col ρ. Also let PTASQ = LsUs

be the LU-decomposition of the scaled matrix TAS computed with the ordinary complete-pivoting
version of our Gaussian-elimination LU-decomposition algorithm. Note the permutation matrices
P and Q are the same in both decompositions.

For T and S non-singular diagonal matrices, we have effectively shown that Ls = TσLSρ and
Us = S−1

ρ USρ where Tσ = diag(Tσ1,σ1
, Tσ2,σ2

, . . ., Tσn,σn) = PTPT and Sρ = diag(Sρ1,ρ1
, Sρ2,ρ2

,

. . ., Sρk,ρk
) = QTSQ.

Thus PTASQ = LsUs = TσLSρS
−1
ρ USρ = PTPTLUQTSQ.

And then TAS = TPTLUQTS, so we may “unscale” by multiplying on the left by T−1 and on the
right by S−1 to obtain A = PTLUQT, or equivalently, PAQ = LU .

Thus computing the LU-decomposition PAQ = LU with pivot values determined by implicit
scaling is equivalent to computing the LU-decomposition PTASQ = LsUs and then “un-scaling”
by computing (PT)−1LsUs(SQ)−1.

Exercise 1.130: Can you give a “dynamic” scaled pivot search where you strike a balance
between partial-pivoting with scaling and complete-pivoting with no scaling by accepting the
pivot element Lpq when Lpq is not too small, but making another choice when Lpq is too small?

Exercise 1.131: Since the average amount of computation for solving an (n + 1) × (n + 1)
system of linear equations increases by O(2n2) operations from the cost of solving an n × n
system of linear equations, is it the case that almost all “random” square systems of linear
equations xA = v will exhibit unbounded relative error in x as n → ∞ when fixed finite-
precision arithmetic is used?

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 45

Exercise 1.132: Let An be the n× n matrix defined by (An)ij = 1/(i + j − 1). This matrix
is called a Hilbert matrix [Knu73]. Let vn = e1 + e2 + · · · + en. Write a program that uses an
LU-decomposition to solve xAn = vn, both with complete-pivoting and with cross-row partial-
pivoting, and with and without implicit scaling.

Compare your results for n = 2, 3, . . . , 9. Note you cannot represent a Hilbert matrix exactly
in floating-point format and this will cause some of the difficulties in computation that you will
observe. Why don’t all inexactly-represented matrices cause trouble?

Exercise 1.133: Another way to compute x ∈ Rn such that xA = v, where A is an n × n
non-singular matrix and v ∈ Rn, is to use the QR-factorization, or more precisely, its transpose,
the LQT-factorization. We may write A = LQT where here L is an n×n lower-triangular rank n
matrix and Q is an n×n orthogonal matrix with Q−1 = QT. Then xLQT = v so xL = vQ, and
this is a triangular system of linear equations, and thus we can compute x via back-substitution.

In practice, the orthogonal matrix Q is computed as a product of Householder reflection matrices
that, when multiplying A on the right, produce a lower-triangular matrix. An alternate way of
computing L and QT essentially involves applying the Gram-Schmidt procedure to the rows of
A, keeping each intermediate inner-product and the final set of orthonormal vectors from which
we form L and QT.

Explain why this method for solving xA = v is not cost-competitive with either direct Gaussian
elimination or use of an LU-decomposition. Research when use of the QR-factorization approach
to solving a set of linear equations is justified.

Exercise 1.134: There are a variety of other methods for solving systems of linear equations
besides Gaussian elimination. (Look-up the Gauss-Seidel and conjugate gradient iterations.) An
iterative method that generates a sequence of approximate solution vectors x(0), x(1), . . . , x(s), . . .
succeeds when this sequence converges to a solution x of the linear system xA = v. Assuming
convergence occurs with exact arithmetic, can such a method be guaranteed to yield a solution
whose relative error is bounded as n→∞ when implemented in fixed finite-precision arithmetic?
Hint: the convergence test itself must be done with the same fixed finite-precision arithmetic.

Exercise 1.135: Since the accuracy of the solution is sometimes poor, why is Gaussian elim-
ination with complete-pivoting or partial-pivoting often used in practice?

A version of our LU-decomposition algorithm incorporating implicit scaling and using a test for a
zero pivot value involving an “approximation to zero” is given below

LU-Decomposition by Column-Operation Gaussian Elimination with Implicit Scaling and Complete-
Pivoting:
input: n× k matrix A, n ≥ 1, k ≥ 1.
output: L, U overwritten in A, σ, ρ, r

1. Define L = A; Define U = A.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 46

2. σ ← 〈1, 2, . . . , n〉; ρ← 〈1, 2, . . . , k〉; h← 1;
α← 0; β ← 0; z ← 1; for j = 1, . . . , k : Sj ← 0; for i = 1, . . . , n : Ti ← 0.

3.

{

Compute the diagonals T [1 : n] and S[1 : k] of the diagonal scale matrices, and
compute the “approximation to zero” bound α.

}

for i = 1, . . . , n :
(for j = 1, . . . , k :
(Ti ← max(Ti, |Aij |); Sj ← max(Sj , |Aij |);
if Aij 6= 0 then (z ← z + 1; α← α + |Aij |)

);

if Ti = 0 then Ti ← 1 else Ti ← T
−1/2
i

);

for j = 1, . . . , k : if Sj = 0 then Sj ← 1 else Sj ← S
−1/2
j ;

α← u · α/z.

4. Determine indices p ∈ {h, . . . , n} and q ∈ {h, . . . , k} such that |Lpq| = maxh≤i≤n
h≤j≤k

|Tσi
LijSρj

|.

5. a← Lpq; if |a| ≤ β then (r ← h− 1; exit(“pivot value near 0”)).

6. If h 6= q then (swap ρh and ρq; swap L col h and L col q in L);
If h 6= p then (swap σh and σp; swap L row h and L row p in L).
{ Now Lhh = a.}

7.

{

Subtract multiples of L col h from L col (h + 1), L col (h + 2), . . . , L col k
to make L row h col [(h + 1) : k] = 0. Also compute U row h col [(h + 1) : k].

}

for j = h + 1, . . . , k :
(z ← Lhj/a; Uhj ← z; for i = h + 1, . . . , n : (Lij ← Lij − zLih)).

8. if h = n or h = k then (r ← h; exit);
h← h + 1; β ← α; go to step 4.

At exit we have computed the n × k lower-triangular matrix L and the k × k upper-triangular
matrix U as specified below. We have also computed the permutation vectors σ and ρ and the
computational rank r. The n× k input matrix A has been overwritten with values that determine
the matrices L and U .

The n×k lower-triangular matrix L is formed as L row i col 1 : i = A row i col 1 : i for i = 1, . . . , r,
L row i col 1 : r = A row i col 1 : r for i = r + 1, . . . , n, and L row 1 : n col (r + 1) : k = 0. The
k × k upper-triangular matrix U is formed as Uii = 1 for i = 1, . . . , k, U row i col (i + 1) : k =
A row i col (i + 1) : k for i = 1, . . . , r, and U row i col (i + 1) : k = 0 for i = r + 1, . . . , k − 1.

The permutation matrix P = I row σ and the permutation matrix Q = I col ρ, together with the
matrices L and U , constitute an LU-decomposition of A: PAQ = LU .

Exercise 1.136: Give a version of the above program with implicit scaling, but with rook-
pivoting in place of complete-pivoting.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 47

Exercise 1.137: Can you devise a version of our Gaussian-elimination LU-decomposition al-
gorithm that “pre-determines” the pivot elements? Specifically, give an algorithm that computes
the permutation vectors σ and ρ by examining the n × k input matrix A. If this can be done,
we can then construct (I row σ)A(I col ρ) and compute the corresponding LU-decomposition
with no pivoting. Hint: recall rook-pivoting plus the fact that the pivot elements must lie in r
distinct rows and r distinct columns when rank(A) = r.

There is a sometimes helpful device called iterative improvement [PTVF92] for improving our
solution x for xA = v obtained using the LU-decomposition of A. The idea is as follows. Suppose
we have an approximate solution y with y = x + d, where d is the error in the vector y. Then
yA = (x+d)A = v+c where c = dA = yA−v. Thus we can compute the error d by solving for d in
dA = yA− v (and we can do this using the already-obtained LU-decomposition of A.) Then y − d
is an improved solution to xA = v, (although Golub and Van Loan [GV89] point-out that d may
be predominantly noise unless arithmetic with higher precision, e.g., twice the precision used in
computing the LU-decomposition, is used to compute the inner-products that arise in the matrix-
vector products involved in computing the residual yA− v. Usually this means a specially-crafted
inner-product routine implementing multi-precision arithmetic needs to be written.)

Although computing one error vector is usually sufficient (and, indeed, if the vector d that we
compute is very small, it need not be used at all,) we can repeat this process until the error vector
is suitably small, e.g., until max1≤i≤n |di| ≤ u · max1≤i≤n |yi| where the “rounding-unit” u is the
smallest (positive) floating-point value such that 1 + u > 1 in machine arithmetic.

Exercise 1.138: Is it possible for iterative improvement to diverge? That is, is it possible
that y − d is a worse solution to xA = v than y itself is? Hint: because of round-off error, the
LU-decomposition of A is generally inexact.

Exercise 1.139: The problem of solving a system of n linear equations with an n×n tridiagonal
coefficient matrix A such that Ai+1,i = ai for 1 ≤ i ≤ n − 1, Ai,i+1 = ci for 1 ≤ i ≤ n − 1,
Aii = di for 1 ≤ i ≤ n, and Aij = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ n with | i− j |≥ 2 is commonly
encountered. Here the elements of the sequences a1, . . . , an−1, c1, . . . , cn−1, and d1, . . . , dn are
given real values.

Devise a specialized algorithm to solve such a tridiagonal system xA = v. First assume the
coefficient matrix A is “diagonally-dominant” and no pivot search is required. (The matrix A is
diagonally-dominant when |Aii| > |Ai1|+ |Ai2|+ · · ·+ |Ain| for 1 ≤ i ≤ n.) Then assume nothing
except that the coefficient matrix A is non-singular. Then assume nothing. Is LU-decomposition
competive in any of these situations?

1.3 Error Analysis for Gaussian Elimination

When fixed finite-precision floating-point arithmetic is used to solve xA = v, either via the LU-
decomposition and back-substitution method, or via direct Gaussian elimination, issues of accuracy
arise. Our increased understanding of the sources and properties of the error in solving xA = v with
Gaussian elimination is one of the many accomplishments of modern numerical analysis [Grc11b].

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 48

Given the n × k matrix A and the k-vector v, solving for an n-vector x such that xA = v exactly
using fixed finite-precision floating-point arithmetic is almost always impossible due to the usual
occurrence of round-off error. (We also have the possibility of overflow and the less-serious possi-
bility of underflow. We will ignore these complications here.) Indeed, even if we could somehow
use exact arithmetic, if the elements of the given input A and v are inexact, or are “rounded-off”,
(for example in order to represent them in a fixed finite-precision floating-point format,) we would
be unable to compute x exactly. (For the analysis below, we will assume A is exactly represented
in our floating-point format.)

For some matrices A and righthand-side vectors v, the error seen in the computed vector x̂ that
approximates the solution vector x where xA = v can be severe or even catastrophic. There are
various ways to exhibit the error in x̂; one way is to look at the residual vector v− x̂A, and another
way is to look at the relative error |x− x̂|/|x|. In this latter case x must be non-zero, and it seems
(incorrectly) that to compute the relative error, x must somehow be known.) Which error measure
is more relevant depends on the purpose to which the computed solution vector x̂ is to be put. The
amazing fact is that having a residual vector with a small norm does not guarantee a small relative
error!

Exercise 1.140: Let A be an n× n non-singular matrix. Show that the error vector x− x̂ =
(v − x̂A)A−1.

Upper bounds on the “length” of the residual |v − x̂A| and on the relative error |x − x̂|/|x| that
depend only on the input A and v and the error introduced by round-off have been derived using
various vector norms | · |, not necessarily the usual 2-norm [vNG47] [Wil63] [GV89] [DB74] [IK66]
[Mey00]. These bounds involve measures of the “length” or “size” of a matrix; such “matrix-size”
functions are called matrix norms and they are defined by extending the ideas of vector norms.

Given a vector norm function | · | defined on Rk, we can define an associated norm function for
n × k matrices A as ‖A‖ = max

x∈Rk,|x|=1
|xAT|. Note we use the traditional notation ‖ · ‖ to denote

a generic matrix norm. The value ‖A‖ specifies the “size” of A as the maximum scale factor by
which the length of a k-vector in the surface of the unit-ball {x ∈ Rk | |x| ≤ 1} defined with
respect to the vector norm | · | is changed by the application of AT producing an n-vector. (Since
{x ∈ Rk | |x| = 1} is closed and bounded, the value ‖A‖ = max

x∈Rk,|x|=1
|xAT| is guaranteed to exist.)

The matrix norm ‖ · ‖ defined as above in terms of the vector norm | · | is called the matrix norm
induced by the vector norm | · |. (We have some awkwardness in our definition of the matrix norm
‖ · ‖ induced by the vector norm | · | because we want to use the same names and defining formulas
of common matrix norms as are found in most texts, and these are based on taking vectors to be
columns rather than rows as we do here.)

When the given vector norm is specifically determined, e.g., as the 1-norm |x|1 = max1≤i≤k |xi|, we
will generally use an identifying subscript to make this clear, and we will use the same subscript
with the induced matrix norm. Without a subscript or other qualification, we are referring to any
vector or matrix norm; this is in contrast to our usual convention for vector norms where |x| denotes
the 2-norm of the vector x when no identifying subscript is present. Also, we shall use the matrix
norm notation ‖ · ‖ for k-vectors considered as members of M1×k or for their transposes considered
as members of Mk×1.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 49

Note when we specify a vector norm or a matrix norm, we are generally defining an entire family
of norms on all the domains where the definition makes sense, e.g., Rk for k ≥ 1 or Mn×k for n ≥ 1
and k ≥ 1.

A matrix norm ‖ · ‖ on Mn×k satisfies the same properties as vector norms:
(1) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = On×k,
(2) ‖αA‖ = |α| · ‖A‖ for α ∈ R,
(3) ‖A + B‖ ≤ ‖A‖+ ‖B‖,
plus one additional property:
(4) ‖AB‖ ≤ ‖A‖ · ‖B‖ whenever the matrices A and B are conformable.

Note this last property involves the family of matrix norms on Mn×k for all n, k ∈ Z+ since
A and B need not have the same dimensions. This last property implies that, for A ∈ Mn×k,
‖yA‖ ≤ ‖y‖ · ‖A‖ for y ∈ Rn and ‖AxT‖ ≤ ‖A‖ · ‖xT‖ for x ∈ Rk. Any induced matrix norm
defined as ‖A‖ = max

x∈Rk,|x|=1
|xAT| with respect to a vector norm | · | is a matrix norm satisfying

(1), (2), (3) and (4) above. Since a matrix norm is also a vector norm on Mn×k treated as an
nk-dimensional vector space, any matrix norm ‖ · ‖ provides a way to measure how close two n× k
matrices A and B are by computing ‖A−B‖.

Exercise 1.141: Show that when A is an n×n non-singular matrix, min
x∈Rn,|x|=1

|xAT| = 1

‖A−1‖ .
What does this statement mean geometrically?

We will use the matrix norm induced by the vector ∞-norm |x|∞ = max1≤i≤k |xi| below. This
matrix norm is

‖A‖∞ = max
x∈Rk,|x|∞=1

|xAT|∞ = max
1≤i≤n

∑

1≤j≤k

|Aij |.

The matrix norm ‖ · ‖∞ is also called the maximum absolute row-sum norm.

The complementary dual matrix norm is the matrix norm induced by the vector 1-norm:

‖A‖1 = max
x∈Rk,|x|1=1

|xAT|1 = max
1≤j≤k

∑

1≤i≤n

|Aij |,

where |x|1 = |x1| + · · · + |xk| for x ∈ Rk. The matrix norm ‖ · ‖1 is also called the maximum
absolute column-sum norm. Note ‖A‖∞ = ‖AT‖1.

Not every matrix norm is induced from a vector norm. The Frobenius norm ‖A‖F := [trace(AAT)]
1

2

is a matrix norm that is not induced by any vector norm.

The vector 1-norm | · |1 can be extended to the sets of matrices Mn×k by |A|1 =
∑

1≤i≤n

∑

1≤j≤k

|Aij |.

This norm is, in fact, a matrix norm since |AB|1 ≤ |A|1 · |B|1 whenever A and B are conformable
matrices. Note this matrix norm is not the same as the matrix norm ‖ · ‖1 induced by the vector
norm |·|1. Indeed, like the Frobenius norm, the matrix norm |·|1 is not induced by any vector norm.
(Because of the confusing and myriad relationships between vector norms, matrix norms obtained

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 50

by extending vector norms, and matrix norms induced by vector norms, alternate notations are
often employed to distinguish among such norms. For example, | · |, ‖ · ‖, and ||| · ||| are sometimes
used for the three categories of norms listed above. Moreover, sometimes the notation |A| is used
to indicate the matrix whose (i, j)th element is |Aij |; we shall write abs(A) instead.)

Exercise 1.142: Show that the Frobenius norm is the extension of the Euclidean norm to

the sets of matrices Mn×k, i.e., ‖A‖F =





∑

1≤i≤n

∑

1≤j≤k

|Aij |2




1/2

. (This is not the same as the

matrix norm induced by the vector 2-norm.)

Exercise 1.143: Show that ‖x‖∞ = |x|1 and ‖x‖1 = |x|∞ for x ∈ Rn.

Exercise 1.144: Is the extension of the ∞-norm | · |∞ to Mn×k a matrix norm?

Exercise 1.145: Show that ‖ · ‖∞ is a matrix norm. Hint: show that maxp
∑

h |Bph| ≤
∑

h maxp |Bph| for B ∈Mk×m.

Solution 1.145: Let A be an n × k matrix and let B be an k ×m matrix. Then ‖AB‖∞ =

max
i

∑

h

|
∑

j

AijBjh| ≤ max
i

∑

h

∑

j

|AijBjh| ≤ max
i

∑

j

max
p

∑

h

|Aij | · |Bjh|

≤



max
i

∑

j

|Aij |





(

max
p

∑

h

|Bph|
)

. Note in particular, ‖xA‖∞ ≤ ‖x‖∞ ·‖A‖∞ where x ∈ Rn.

Exercise 1.146: Show that ‖ · ‖1 is a matrix norm.

An important property of vector and matrix norms is that all norms on a given finite-dimensional
vector space V are equivalent where two norms | · |a and | · |b are equivalent when there exist positive

constants µab and νab such that µab ≤
|x|a
|x|b

≤ νab for x ∈ V − {0}. This means we can convert

inequalities involving specified norms to similar inequalities involving other norms.

We can show that any two norms | · |a and | · |b on a finite-dimensional vector space V are equivalent
as follows. Let Sb = {y ∈ V | |y|b = 1} and let µ = min

y∈Sb

|y|a. Note µ > 0 because Sb is closed and

bounded away from 0.

Now if
x

|x|b
∈ Sb then |x|a = |x|b

∣

∣

∣

∣

x

|x|b

∣

∣

∣

∣

a

≥ |x|b min
y∈Sb

|y|a = |x|bµ. Thus |x|a ≥ µ|x|b.

Similarly, let Sa = {y ∈ V | |y|a = 1} and let ν = min
y∈Sa

|y|b. Note ν > 0.

Now if
x

|x|a
∈ Sa then |x|b = |x|a

∣

∣

∣

∣

x

|x|a

∣

∣

∣

∣

b

≥ |x|a min
y∈Sa

|y|b = |x|aν. Thus |x|b ≥ ν|x|a.

Therefore, µ|x|b ≤ |x|a ≤
1

ν
|x|b, and taking µab = µ and νab =

1

ν
, we have µab ≤

|x|a
|x|b

≤ νab for

x ∈ V − {0} where µab and νab are positive constants.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 51

Exercise 1.147: Show that when the subscript a denotes the ∞-norm so that ‖A‖a = ‖A‖∞
and the subscript b denotes the 1-norm so that ‖A‖b = ‖A‖1, then the equivalent-norm constants
relating the norms ‖ · ‖a and ‖ · ‖b satisfy µab = νba and νab = µba. For ‖ · ‖∞ and ‖ · ‖1 on Mn×n,

we have µab =
1

n
and νab = n. Thus

1

n
‖A‖∞ ≤ ‖A‖1 ≤ n‖A‖∞ and

1

n
‖A‖1 ≤ ‖A‖∞ ≤ n‖A‖1

for A ∈Mn×n.

Exercise 1.148: Show that ‖A‖1 ≤ |A|1 ≤ n‖A‖1 for A ∈Mn×n.

Now returning to the analysis of errors in the solution of a set of linear equations, let xA = v, and
assume we have computed an approximation x̂ to x using LU-decomposition and back-substitution.
Also suppose we have an n× k matrix E such that x̂(A + E) = v. In other words, we look at x̂ as
the exact solution of a “nearby” system of linear equations, as well as an approximate solution of
the given system of linear equations.

This “natural” idea can be realized, i.e., such a matrix E always exists when x̂ 6= 0, (generally
many error matrices exist such that x̂(A + E) = v.) We compute x̂ which “solves” xA = v with
error. Thus x̂A = v + ṽ for some vector ṽ. Now we introduce a matrix E such that x̂E = −ṽ.
Note this is always possible when x̂ 6= 0. Then x̂(A + E) = v. This introduction of an error matrix
is possible for any consistent linear system of equations xA = v where the computed solution x̂ is
non-zero. (Note if x̂ is close to 0 and v is far from 0, E may need to be large.)

Introducing an error matrix E “converts” the error in x̂ to become error in A instead. This
error matrix E is now taken to be due to the round-off error that occurs in computing the LU-
decomposition of A and using back-substitution to compute x̂.

For the purpose of error analysis, we may assume the permutation matrices P and Q that bring the
pivot elements of A onto the diagonal are identity matrices since permuting rows and columns during
the computation for L and U introduces no errors. Thus, for the purpose of error analysis, we may
assume A is “pre-permuted” and we may write LU = A and similarly write the LU-decomposition
of A computed with fixed finite-precision arithmetic in terms of error matrices without permutation
matrix factors.

The Gaussian-elimination LU-decomposition algorithm applied to the n×n non-singular matrix A
generates two sequences of matrices: L(1) = A, L(2), . . ., L(n) = L and U (1) = I, U (2), . . ., U (n) = U ,
where L(h+1) and U (h+1) are computed in iteration h. When fixed finite-precision arithmetic is
used, corresponding sequences L̂(1) = A, L̂(2), . . ., L̂(n) = L̂ and Û (1) = I, Û (2), . . ., Û (n) = Û are
computed instead, where L̂(h) and Û (h) correspond to L(h) and U (h) with round-off error included.
Thus the LU-decomposition of A computed with fixed finite-precision arithmetic consists of a
lower-triangular matrix L̂ and an upper-triangular matrix Û with diag(Û) = (1, 1, . . . , 1) such that
L̂Û = A + Ã for some error matrix Ã (under our assumption that A is “pre-permuted”, and no
pivot search is used.)

Let the error matrices L̄ and Ū be defined by L+ L̄ = L̂ and U + Ū = Û . Then Ã = L̄U +LŪ + L̄Ū .
Note when L and U are uniquely determined by A, the error matrix Ã is also uniquely determined
by A since L̂ and Û are uniquely determined by A by their construction.

Further error is introduced when computing x̂ by back-substitution. Specifically, we want to solve
yU = v and xL = y, and, with fixed finite-precision arithmetic, this results in ŷ and x̂ where

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 52

ŷ(Û + U ′) = v and x̂(L̂ + L′) = ŷ. The error matrices L′ and U ′ are due to round-off error in the
back-substitution computation.

Thus x̂(L̂+L′)(Û+U ′) = v. Let L̃ = L̄+L′ and Ũ = Ū+U ′. Then, in terms of these combined error
matrices, we have x̂(L+L̃)(U +Ũ) = v and thus A+E = (L+L̃)(U +Ũ) = LU +L̃U +LŨ +L̃Ũ , so
E = L̃U +LŨ +L̃Ũ . Altogether then, x̂ can be taken as an exact vector that satisfies x̂(A+E) = v.

Exercise 1.149: Show that a specific error matrix E such that x̂(A+E) = v can be computed

in terms of x̂, A, and v as E =
x̂Td

x̂x̂T
where d = v − x̂A.

When we study how close the matrix A + E is to A, i.e., how “big” E is, we are doing a backwards
error analysis. We are transferring our attention from the problem of estimating the error in x̂
caused by round-off error to the problem of what nearby problem has x̂ as its exact solution and
how close together the original problem and the nearby problem are.

If A + E is sufficiently close to A for A in some class of matrices W then we say that our LU-
decomposition and back-substitution algorithm for solving systems of linear equations is (back-
wards) stable for inputs (A, v) ∈W ×Rk; this means that, for the problem xA = v, our algorithm
outputs the exact solution to a quantifiably-nearby problem. This is realistically the most we can
hope for in the presence of round-off error. (The stability class W depends on what we take “suffi-
cently close” to mean.) Note, since the matrix E such that x̂(A + E) = v is not generally unique,
we may restrict our choice of E to be minimal in some matrix norm if desired.

Exercise 1.150: Suppose W1 is the class of matrices for which Gaussian-elimination LU-
decomposition with minimal pivoting is stable (according to some fixed criterion.) And suppose
W2 is the class of matrices for which Gaussian-elimination LU-decomposition with cross-row
partial pivoting is stable (using the same criterion,) and W3 is the class of matrices for which
Gaussian-elimination LU-decomposition with complete pivoting is stable (again using the same
criterion.) Is it the case that W1 ⊆W2 ⊆W3?

Our LU-decomposition and back-substitution algorithm often yields a small residual v − x̂A when
(A, v) ∈W×Rk. However having |v−x̂A| small does not guarantee that the relative error |x−x̂|/|x|
in the computed solution x̂ is small. For the relative error to be small, other conditions on the
matrix A must hold. It is also possible to have a large residual and a small relative error.

Now let us take k = n so that A is a square matrix, and let A be non-singular. Then with A
non-singular, we can obtain Wilkinson’s bound [Wil63] [IK66] [DB74] [GV89] [Mey00]:

‖E‖∞ ≤ k2(n)u · ‖A‖∞,

where u is the rounding-unit of our floating-point number system and where k2(n) = (3n3 +2n2)gn

with gn ≤ 2n−1 when cross-column partial-pivoting is used. This bound is sharp, i.e., this bound
is attained for certain n × n matrices when the exact value of gn is used as defined below. And

gn ≤ n
1

2

[

2 · 3 1

2 · · ·n
1

n−1

] 1

2 ≤ 2n1/2nlog(n)/4 when complete-pivoting is used. When rook-pivoting

is employed, Foster shows that gn ≤ 1.5n4+3 log(n)/4 which is comparible to the complete-pivoting
bound [Fos97]. (Recall that the rounding-unit u is the smallest positive floating-point value such

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 53

that 1+u > 1 in machine arithmetic. The associated “binary-precision” is p = 1− log2(u) bits and
the corresponding decimal precision is [1− log2(u)]/ log2(10) digits.)

The function gn is defined with respect to the sequence of matrices A(h) = Rh · · ·R1AC1M1 · · ·ChMh

+E(h) for h = 1, . . . , n arising in the iterations of the LU-decomposition algorithm where E(h) is the
matrix of errors introduced during iterations 1 through h by using fixed finite-precision arithmetic.
Recall that for the purpose of error analysis, we may take the permutation matrices R1, . . ., Rn and
C1, . . ., Cn to be identity matrices. (Note A(h) = L̂(h) where the matrices A = L̂(1), L̂(2), . . . , L̂(n)

are computed in the successive iterations of the Gaussian-elimination LU-decomposition algorithm
using fixed finite-precision arithmetic.) Specifically, assuming A has computational rank n, so that
the LU-decomposition algorithm has n iterations, we have

gn =



 max
1≤h≤n

max
1≤i≤n
1≤j≤n

|A(h)
ij |



 /



 max
1≤i≤n
1≤j≤n

|Aij |



 .

The function gn measures the relative “growth” of elements in the sequence of matrices A(1), A(2),
. . ., A(n), (i.e., L̂(1), L̂(2), . . ., L̂(n),) and specifically, gn bounds the relative growth in the suc-
cessive pivot values used in the Gaussian-elimination LU-decomposition algorithm, when fixed
finite-precision arithmetic is used.

The value gn depends on the choice of pivot values; this is why the bounds for gn are different
for complete-pivoting and partial-pivoting. (We require A have computational rank n to avoid
an undefined gn multiplier value.) (Since with either cross-column partial-pivoting or complete-
pivoting, |Uij | ≤ 1, it is the potential growth in the intermediate results in L(h) for h = 1, 2, . . . , n
that we are concerned with.

Exercise 1.151: We have |Uij | ≤ 1. Do we also have |Ûij | ≤ 1, where Û is the estimate of U
computed with fixed finite-precision arithmetic. Hint: look at the definition of rounding with

the rounding unit u: round(2mf) = sign(f) · 2m · u ·
⌊ |f |

u
+

1

2

⌋

where f = 0 or
1

2
≤ |f | < 1 and

m ∈ Z.

(When round(2mf) is to be involved in a further computation with other rounded numbers, a

better statistically-unbiased rounding formula is obtained by treating the case
|f |
u

mod 1 =
1

2

specially. If
|f |
u

mod 1 =
1

2
, we add

1

2
to
|f |
u

to round up only if the integer u

⌊ |f |
u

⌋

is odd;

otherwise we add 0.)

Although sharp, Wilkinson’s bound is almost always conservative. Also the bounds for the function
gn given above are generally far too large; for complete-pivoting gn is a slow-growing function of n,
and empirically, for most matrices, gn < 10 for n < 400 even for partial-pivoting [GV89] [DB74].
(Does gn → ∞ as n → ∞, either with ‖A‖∞ < α for α fixed or when ‖A‖∞ is unconstrained and
the elements of A are randomly-chosen according to some convenient (semi-realistic) distribution,
when complete-pivoting is employed?) Prior to 1992 it was conjectured that gn ≤ n for complete-
pivoting, however, counterexamples have been provided by Edelman [Ede92]. Obtaining a tighter

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 54

bound on gn, potentially given in terms of the elements of the matrix A, is one of the outstanding
problems in numerical analysis.

Note as a practical matter, we could directly compute gn for any particular matrix A while executing
the LU-decomposition algorithm.

Wilkinson’s bound directly indicates how far the matrix A + E is from the matrix A, and thus
Wilkinson’s bound allows us to define the class W of matrices for which we will deem LU-
decomposition and back-substitution to be stable in terms of the values n and ‖A‖∞.

With the non-singular matrix A “pre-permuted” so that A is a diagonal-pivot matrix and no pivot
search is required, then starting with L(1) = A, and using exact arithmetic, the Gaussian-elimination
LU-decomposition algorithm generates the sequence of matrices L(1), L(2), . . ., L(n) = L, as well as
the sequence of matrices U (1) = In×n, U (2), . . ., U (n) = U using the successive diagonal elements

L
(1)
11 , L

(2)
22 , . . . as pivot values. The elements of U are accumulated row by row, and once entered in

U (h) are never changed; and most importantly, |Uij | ≤ 1. The elements of the matrices L(1), L(2),
. . ., L(n) = L, however, may grow large in magnitude as the LU-decomposition algorithm progresses
iteration by iteration.

Wilkinson’s bound arises from looking closely at the error in the output L̂ and Û of the Gaussian-
elimination LU-decomposition algorithm using fixed finite-precision arithmetic. To do this we must
examine the errors in the sequence of matrices L̂(1), L̂(2), . . ., L̂(n) = L̂, and in the matrix Û (n) = Û ,
where L̂(h) is the estimate of the matrix L(h) and Û (h) is the similar estimate of the matrix U (h)

obtained with fixed finite-precision arithmetic. Recall that with exact arithmetic, we have:

L
(h+1)
ij =











0 for i ≤ h and j > i,

L
(h)
ij for j ≤ h and i ≥ j,

L
(h)
ij − Uhj · L(h)

ih for j > h and i > h,

and Uij =



















0 for i > j,
1 for i = j,

L
(i)
ij

L
(i)
ii

for i < j.

When fixed finite-precision arithmetic is used, we compute the matrices L̂ and Û rather than L
and U , and we have:

L̂
(h+1)
ij =











0 for i ≤ h and j > i,

L̂
(h)
ij for j ≤ h and i ≥ j,
[

L̂
(h)
ij − Ûhj · L̂(h)

ih · (1 + α
(h+1)
ij u)

]

(1 + β
(h+1)
ij u) for j > h and i > h,

and Û
(h+1)
ij =



















0 for i < j,
1 for i = j,
[

L̂
(i)
ij

L̂
(i)
jj

]

(1 + γ
(h+1)
ij u) for i < j,

where u is our rounding unit and 1 + α
(h)
ij u, 1 + β

(h)
ij u, and 1 + γ

(h)
ij u, with |α(h)

ij | ≤ 1, |β(h)
ij | ≤ 1,

and |γ(h)
ij | ≤ 1, are values that encode the rounding done in the operations they multiply during

iteration h. Recall Û = Û (n).

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 55

We may convert our accounting for error in L̂
(h+1)
ij to additive error by writing

L̂
(h+1)
ij =











0 for i ≤ h and j > i,

L̂
(h)
ij for j ≤ h and i ≥ j,

L̂
(h)
ij − Ûhj · L̂(h)

ih + ǫ
(h+1)
ij for j > h and i > h,

and we may show that |ǫ(h+1)
ij | ≤ 2gnu max

i,j
|Aij | for i > h + 1, j > h + 1.

By looking at the error matrix Ã = L̂Û − A, and using the recursion relation L̂
(h+1)
ij = L̂

(h)
ij −

Ûhj · L̂(h)
ih + ǫ

(h+1)
ij for j > h and i > h, we can obtain |Ãij | =

∑

1≤h≤i

|ǫ(h+1)
ij | for i < j and |Ãij | =

∑

1≤h<j

|ǫ(h+1)
ij | for i ≥ j. Let α = maxi,j |Aij |. Then the bound |ǫ(h+1)

ij | ≤ 2gnuα for i > h + 1,

j > h + 1 yields |Ãij | ≤
{

i2αgnu for i < j,
(j − 1)2αgnu for i ≥ j,

so ‖Ã‖∞ ≤ n(n− 1)αgnu.

Now we may bound the magnitudes of the elements of the error matrix T ′ accounting for the
round-off error in solving an n× n lower-triangular system xT = y by back-substitution (i.e.,
x̂(T + T ′) = y.) This bound is |T ′

ij | ≤ max(2, |i − j + 1|) · |Tij | · u with nu ≤ 1. We can use

this bound together with the bound on ‖Ã‖∞ to obtain Wilkinson’s bound: ‖E‖∞ ≤ k2(n)u‖A‖∞
where k2(n) = (3n3 + 2n2)gn. A full proof of Wilkinson’s bound is given in [IK66].

We know from practice and experience that using a minimal pivot search results in large errors
relatively often; thus we take it as accepted that LU-decomposition and back-substitution with
minimal-pivoting is unstable outside a relatively-small class of inputs. For any chosen stabil-
ity criteria, the stability class for LU-decomposition and back-substitution with minimal-pivoting
is much smaller than the stability class for LU-decomposition and back-substitution with either
partial-pivoting or complete-pivoting.

Note both LU-decomposition and back-substitution with complete-pivoting and LU-decomposition
and back-substitution with partial-pivoting become less stable as n → ∞. More precisely, the
class of matrices for which either algorithm is stable diminishes in size as n→∞, but the class of
matrices for which LU-decomposition and back-substitution with partial-pivoting is stable shrinks
in size much faster than the class of matrices for which complete-pivoting is stable.

There are two relative errors we may consider: |x − x̂|/|x| is the forward relative error of x̂ and
|x− x̂|/|x̂| is the backward relative error of x̂ with respect to the vector norm | · |. (We assume that
x 6= 0 and x̂ 6= 0.) These relative error quantities are related.

Specifically, define δ by δ|x| = |x− x̂| and define γ by γ|x̂| = |x− x̂| where | · | is a generic vector
norm. Then δ = |∆|/|x|, and γ = |∆|/|x̂| where ∆ = x̂ − x. Note |∆| = | − ∆|. Thus δ is the
forward relative error of x̂ and γ is the backward relative error of x̂ with respect to the vector norm

| · |. Also,
δ

1 + δ
=

|∆|/|x|
1 + |∆|/|x| =

|∆|
|x|+ |∆| ≤

|∆|
|x̂| = γ since |x̂| = |x + ∆| ≥ |x| + |∆|. Similarly,

γ

1 + γ
=

|∆|/|x̂|
1 + |∆|/|x̂| =

|∆|
|x̂|+ |∆| ≤

|∆|
|x| = δ.

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 56

Exercise 1.152: Show that |x−x̂|1/|x|1 = ‖x−x̂‖∞/‖x‖∞ and |x−x̂|∞/|x|∞ = ‖x−x̂‖1/‖x‖1.

Now to obtain a bound on the backward relative error |x− x̂|/|x̂| = |∆|/|x̂| where ∆ = x̂− x, we
may proceed as follows.

Suppose n = k and suppose A is non-singular. We have xA = v and x̂(A + E) = v = (x + ∆)(A +
E) = xA + xE + ∆A + ∆E, so ∆A + x̂E = 0. Thus ∆ = −x̂EA−1, so for any generic matrix norm
‖ · ‖, we have ‖∆‖ ≤ ‖x̂‖ · ‖E‖ · ‖A−1‖, and thus

‖∆‖
‖x̂‖ ≤ κ(A)

‖E‖
‖A‖

where κ(A) = ‖A‖ · ‖A−1‖.

The value κ(A) is called the condition number of the non-singular matrix A with respect to the
matrix norm ‖ · ‖. (In some circumstances we can take κ(A) = ‖A‖ · ‖A+‖ for arbitrary n × k
matrices where A+ is the Moore-Penrose pseudo-inverse of A.) Note the condition number κ is
dependent on the matrix norm employed. When we have a specific norm ω in mind, we shall write
κω.

Note when we take our generic matrix norm to be ‖ · ‖∞, Wilkinson’s bound yields

‖∆‖∞
‖x̂‖∞

≤ κ∞(A)k2(n)u.

This inequality shows that the backward relative error in x̂ measured with respect to the maximum-
absolute-rowsum matrix norm is small when n and the condition number κ∞(A) are not too large.
If the ∞-matrix norm of the matrix of measurement errors in the coefficient matrix A is greater
than k2(n)uκ∞(A) then we may justifiably claim that x̂ is as accurate as possible since we start
with an uncertainty equal to or greater than that produced by round-off error.

Now since |z|1 = ‖z‖∞ and |z|∞ = ‖z‖1 for z ∈ Rn, it is convenient to let the vector norm | · |
denote the vector norm | · |1 and the matrix norm ‖ · ‖ denote the matrix norm ‖ · ‖∞, or let the
vector norm | · | denote the vector norm | · |∞ and the matrix norm ‖ · ‖ denote the matrix norm
‖ · ‖1. Then, with this understanding,

|∆|
|x̂| =

‖∆‖
‖x̂‖ ≤ κ(A)

‖E‖
‖A‖

where κ(A) = ‖A‖ · ‖A−1‖.

Exercise 1.153: Show that
|∆|
|x̂| ≤

‖v − x̂A‖
‖x̂‖ · ‖A‖ . Hint: ‖x− x̂‖ ≤ ‖v − x̂A‖ · ‖A−1‖.

Now recall
|∆|
|x̂| = γ ≥ δ/(1 + δ). Let β = κ(A)

‖E‖
‖A‖ . Then β ≥ γ and thus β ≥ δ/(1 + δ). Thus

(1 + δ)β ≥ δ so (β − 1)δ ≥ −β and (1 − β)δ ≤ β. Now if β = κ(A)
‖E‖
‖A‖ < 1, then δ ≤ β/(1 − β).

1 GAUSSIAN ELIMINATION AND LU-DECOMPOSITION 57

Thus we have the upper bound κ(A)
‖E‖
‖A‖ /

(

1− κ(A)
‖E‖
‖A‖

)

for the forward relative error
|∆|
|x| when

κ(A)
‖E‖
‖A‖ < 1, i.e., when 1− κ(A)

‖E‖
‖A‖ = 1− β > 0 with A non-singular, we have

|∆|
|x| ≤ κ(A)

‖E‖
‖A‖ /

(

1− κ(A)
‖E‖
‖A‖

)

=
κ(A)‖E‖

‖A‖ − κ(A)‖E‖ =
κ(A)

‖A‖/‖E‖ − κ(A)

where | · | and ‖ · ‖ are either | · |1 and ‖ · ‖∞, or | · |∞ and ‖ · ‖1, respectively. (β < 1 is equivalent
to ‖A−1‖ · ‖E‖ < 1, and this implies A + E is non-singular.)

As κ(A) or ‖E‖ or both increase so that κ(A)
‖E‖
‖A‖ approaches 1, this bound approaches ∞, (and

if κ(A)
‖E‖
‖A‖ ≥ 1,

|∆|
|x| is potentially unbounded, i.e., A + E might be singular.)

If we fix our matrix norm to be ‖ · ‖∞, and use Wilkinson’s bound and assume the maximum

amount of round-off error occurs so that ‖E‖∞ = k2(n)u‖A‖∞, then
‖∆‖∞
‖x‖∞

≤ κ∞(A)k2(n)u/(1−

κ∞(A)k2(n)u) when κ∞(A) <
1

k2(n)u
. This reveals that with µ ∈ (0,∞), if κ∞(A) <

1

k2(n)u
· µ

1 + µ

then
‖∆‖∞
‖x‖∞

≤ µ.

Exercise 1.154: Let α = k2(n)u and let µ ∈ (0,∞). Show that, with | · | = | · |1, δ ≤ µ when

κ∞(A) ≤ 1

α
· µ

1 + µ
.

A matrix A for which κ(A) is large is called ill-conditioned. A system of linear equations xA = v
with an ill-conditioned coefficient matrix and a non-zero righthand-side vector has the property that
a small change in A can produce a large change in the computed solution x̂. An ill-conditioned set
of linear equations is essentially a set of linearly-dependent or almost linearly-dependent equations.
(We should make every effort to avoid having to compute a solution for xA = v where A has less
than full rank.) When the rows of A are “robustly” independent, the condition number κ(A) will
not be large.

If a sufficiently-small pivot value arises during execution of the LU-decomposition algorithm then
the coefficient matrix A is ill-conditioned. The converse is not true. A matrix A may not have any
overly-small or overly-large non-zero elements, and it may be that the magnitudes of all the pivot
values that arise are far from zero, but still κ(A) is large.

Exercise 1.155: Let the n × n matrix B =















1 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0

...
...

. . .
. . . 0

−1 −1 · · · −1 1















. Show that B−1 is

defined by (B−1))ij = 0 for i < j, (B−1))ij = 1 for i = j, and (B−1))ij = 2i−1−j for i > j. Then
show that κ∞(B) = κ1(B) = n · 2n−1.

REFERENCES 58

This example shows that a nice-looking matrix like B, whose pivot values for either minimal-
pivoting, cross-column partial-pivoting, or complete-pivoting, are all of similar magnitude can
have a large condition number. Although computing a solution to xB = v can be done exactly
or almost exactly, computing a solution to x(B + P) = v, for P a perturbation matrix with
small elements is much more problematic for large n.

In order to assess the condition of a matrix A we need to estimate κ(A) = ‖A‖ · ‖A−1‖ using some
matrix norm. If we had to compute A−1 it would be costly, and also potentially unreliable if κ(A)
were in fact large. Golub and Van Loan [GV89] discuss an O(n2) algorithm for estimating κ∞(A),
and with this algorithm we have a reasonable (but not guaranteed) way to assess the relative error
(either forward or backward) in a computed solution x̂ of the linear system xA = v by estimating
the relevant relative error upper-bound with respect to the ∞ matrix norm. (Experiments show
that we may generally take k2(n) ≤ 10 when n ≤ 100, however this is not guaranteed.) Another
way to assess the relative error in x̂ is to perturb A, re-solve xA = v, and see if the new x̂ is close
to or far from the old x̂.

Exercise 1.156: Explain why round-off error will generally cause the computational rank of
an n× n coefficient matrix to be the value n when the LU-decomposition algorithm is applied.

Since
‖∆‖∞
‖x̂‖∞

≤ 10

2p
κ∞(A) is usually approximately true when p is the binary precision of our

floating-point format, we may define ‘ill-conditioned’ as κ∞(A) > 2p/2, say. In general we can
expect h-decimal-digit accuracy in x̂ when κ∞(A) < 2d−h where d = p log2(10), and we cannot
expect h-decimal-digit accuracy otherwise.

We have xA = v and x̂(A + E) = v so the residual d := v − x̂A = v − x̂(A + E) + x̂E = x̂E and
thus ‖d‖ ≤ ‖x̂‖ · ‖E‖. For A non-singular, Wilkinson’s bound yields ‖d‖∞ ≤ k2(n)u‖A‖∞‖x̂‖∞.

Since this bound on the length of the residual depends on ‖x̂‖∞ as well as ‖A‖∞, and does not
directly depend on κ∞(A), we see that the size of d is not well-correlated with the accuracy of x̂

as measured by either the forward relative error
‖∆‖∞
‖x‖∞

or the backward relative error
‖∆‖∞
‖x̂‖∞

.

Exercise 1.157: Show that d = −∆A where ∆ = x̂− x and show that ‖∆‖ ≥ ‖d‖/‖A‖.

Exercise 1.158: (Dahlquist [DB74]) Assume xA = v where A is an n×n non-singular matrix
and v 6= 0. Define e by x̂A = v + e where x̂ is the approximate solution of xA = v produced
by the LU-decomposition and back-substitution algorithm with complete-pivoting. (Here we
ascribe the result of round-off error to be equivalent to a perturbation of the righthand-side
vector v.)

Let ∆ = x̂− x. Show that ‖∆‖ ≤ ‖A−1‖ · ‖e‖. Show that
‖∆‖
‖x‖ ≤ κ(A)

‖e‖
‖v‖ = κ(A)

‖v − x̂A‖
‖v‖ .

References

[DB74] Germund Dahlquist and Ăke Bjørck. Numerical Methods. Prentice-Hall, 1974.

REFERENCES 59

[DJM06] Froilán Dopico, Charles Johnson, and Juan Molera. Multiple LU factorizations of a
singular matrix. Lin. Alg. and its Applications, (419):24–36, 2006.

[Ede92] Alan Edelman. The complete pivoting conjecture for Gaussian elimination is false. The
Mathematica Journal, 2:58–61, 1992.

[Fos97] Leslie V. Foster. The growth factor and efficiency of Gaussian elimination with rook
pivoting. J. Computational and Applied Math., 86(1):177–194, 1997.

[Grc11a] Joseph F. Grcar. How ordinary elimination became Gausssian elimination. Historia
Math., 38:163–218, 2011.

[Grc11b] Joseph F. Grcar. John von Neumann’s analysis of Gausssian elimination and the origins
of modern numerical analysis. SIAM Review, 53(4):607–682, 2011.

[GV89] Gene H. Golub and Charles F. Van Loan. Matrix Computations, second edition. John
Hopkins University Press, 1989.

[IK66] Eugene Issacson and Herbert Bishop Keller. Analysis of Numerical Methods. Wiley,
New York, 1966.

[Knu73] Donald E. Knuth. The Art of Computer Programming: Volume 1, Fundamental Algo-
rithms, second edition. Addison-Wesley, New York, 1973.

[Knu97] Donald E. Knuth. The Art of Computer Programming: Volume 2, Seminumerical Al-
gorithms. Addison-Wesley, New York, 1997.

[Mey00] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[NP92] Larry Neal and George Poole. A geometric analysis of gaussian elimination II. Linear
Algebra Appl., 173:249–272, 1992.

[OJ97] Pavel Okunev and Charles R. Johnson. Necessary and sufficient conditions for existence
of the LU factorization of an arbitrary matrix. arxiv.org, technical report, Dept. of
Mathematics, College of William and Mary, July 1997.

[ON96] Markus Olschowka and Arnold Neumaier. A new pivoting strategy for Gaussian elimi-
nation. Linear Algebra Appl., 240:131–151, 1996.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in FORTRAN - The Art of Scientific Computing (2nd. ed.). Cambridge
Univ. Press, N.Y., 1992.

[Smi10] Jane Smiley. The Man who invented the Computer: the Biography of John Atanasoff.
Doubleday, New York, 2010.

[vNG47] John von Neumann and Herman H. Goldstine. Numerical inverting of matrices of high
order. Bull. Amer. Math. Soc., 53:1021–1099, 1947.

[Wil63] James H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, 1963.

